Solveeit Logo

Question

Question: If I<sub>1</sub> = \(\int_{0}^{\pi/2\int}\cos\) (sin x) dx; I<sub>2</sub> = \(\int_{0}^{\pi/2\int}\s...

If I1 = 0π/2cos\int_{0}^{\pi/2\int}\cos (sin x) dx; I2 = 0π/2sin\int_{0}^{\pi/2\int}\sin (cos x)dx and

I3 = 0π/2cos\int_{0}^{\pi/2\int}\cos x dx, then -

A

I1> I3> I2

B

I3> I1> I2

C

I1> I2> I3

D

I3> I2> I1

Answer

I1> I3> I2

Explanation

Solution

Sol. Qsinx < x " x Ī (0, )

so, cos(sin x) > cosx, so I1 > I3

and sin sinx > sinx

so 0π/2sin(sinx)dx\int_{0}^{\pi/2}{\sin(\sin x)dx} > 0π/2(sinx)dx\int_{0}^{\pi/2}{(\sin x)dx}

0π/2sin(cosx)dx\int_{0}^{\pi/2}{\sin(\cos x)dx}> 0π/2(cosx)dx\int_{0}^{\pi/2}{(\cos x)dx}Ž I2 > I3