Question
Question: If I<sub>1</sub> = \(\int_{0}^{\pi/2\int}\cos\) (sin x) dx; I<sub>2</sub> = \(\int_{0}^{\pi/2\int}\s...
If I1 = ∫0π/2∫cos (sin x) dx; I2 = ∫0π/2∫sin (cos x)dx and
I3 = ∫0π/2∫cos x dx, then -
A
I1> I3> I2
B
I3> I1> I2
C
I1> I2> I3
D
I3> I2> I1
Answer
I1> I3> I2
Explanation
Solution
Sol. Qsinx < x " x Ī (0, )
so, cos(sin x) > cosx, so I1 > I3
and sin sinx > sinx
so ∫0π/2sin(sinx)dx > ∫0π/2(sinx)dx
∫0π/2sin(cosx)dx> ∫0π/2(cosx)dxŽ I2 > I3