Solveeit Logo

Question

Question: If I<sub>1</sub> = \(\int_{0}^{\pi/2}{\frac{x}{\sin x}dx}\) and I<sub>2</sub> = \(\int_{0}^{1}{\frac...

If I1 = 0π/2xsinxdx\int_{0}^{\pi/2}{\frac{x}{\sin x}dx} and I2 = 01tan1xxdx\int_{0}^{1}{\frac{\tan^{- 1}x}{x}dx}, thenI1I2\frac{I_{1}}{I_{2}}=

A

1

B

1/2

C

2

D

p/2

Answer

2

Explanation

Solution

I2 = 01tan1xxdx\int_{0}^{1}\frac{\tan^{- 1}x}{x}dx, x = tanq

Ž I2 = 0π/42θsin2θdθ\int_{0}^{\pi/4}\frac{2\theta}{\sin 2\theta}d\theta = 120π/2xsinxdx\frac{1}{2}\int_{0}^{\pi/2}\frac{x}{\sin x}dx = 12.I1\frac{1}{2}.I_{1}

Ž I1I2\frac{I_{1}}{I_{2}} = 2