Solveeit Logo

Question

Question: If I<sub>1</sub> = <img src="https://cdn.pureessence.tech/canvas_595.png?top_left_x=1111&top_left_y=...

If I1 = , I2 = 0π/2sin(cosx)dx\int _ { 0 } ^ { \pi / 2 } \sin ( \cos x ) d x, I3 = 0π/2cosxdx\int _ { 0 } ^ { \pi / 2 } \cos x d x , then

A

I1> I2> I3

B

I3> I2> I1

C

I1> I3>I2

D

I3> I1> I2

Answer

I1> I3>I2

Explanation

Solution

Q sin x < x " x > 0

̃ sin (cos x) < cos x for 0 < x < p/2

̃0π/2sin(cosx)dx\int _ { 0 } ^ { \pi / 2 } \sin ( \cos x ) d x < ̃ I2 < I3 .... (i)

Further x Î [0, p/2] ̃ sin x < x and x1, x2 Î [0, p/2]

x1 > x2 ̃ cos x1 < co s x2

\ cos x < cos (sin x)

= 0π/2cosxdx\int _ { 0 } ^ { \pi / 2 } \cos x d x < 0π/2cosx(sinx)dx\int _ { 0 } ^ { \pi / 2 } \cos x ( \sin x ) d x

̃ I3 < I1 ..... (ii) (i), (ii)

̃ I2 < I3 < I1 ̃ I1 > I3 > I2