Solveeit Logo

Question

Question: If I<sub>1</sub> =\(2\pi f(x)\) and I<sub>2</sub> =\(f(4)f(x) = \sin^{2}x\), where \| x \| \< 1, the...

If I1 =2πf(x)2\pi f(x) and I2 =f(4)f(x)=sin2xf(4)f(x) = \sin^{2}x, where | x | < 1, then which of the following statement is true –

A

Neither I1 nor I2 exists

B

I1 exists and I2 does not exists

C

I1 does not exists and I2 exists

D

None of these

Answer

I1 does not exists and I2 exists

Explanation

Solution

We know tan1xx\frac { \tan ^ { - 1 } x } { x } < 1 and > 1, ∀ x ∈ R

tan1xx\frac { \tan ^ { - 1 } x } { x }< 0 and tan1xx\frac { \tan ^ { - 1 } x } { x } > 0

⇒ I1 does not exists and I2 exists

Hence (3) is the correct answer.