Solveeit Logo

Question

Question: If I<sub>10</sub> =\(\int_{0}^{\pi/2}{x^{10}\sin xdx}\), then I<sub>10</sub> + 90 I<sub>8</sub> is...

If I10 =0π/2x10sinxdx\int_{0}^{\pi/2}{x^{10}\sin xdx}, then I10 + 90 I8 is

A

10 (p/2)6

B

10 (p/2)9

C

10 (p/2)8

D

10 (p/2)7

Answer

10 (p/2)9

Explanation

Solution

I10 = (x10cosx)0π/2(–x^{10}\cos x)_{0}^{\pi/2}+ 100π/2x9cosxdx\int_{0}^{\pi/2}{x^{9}\cos xdx}

= 100π/2x9cosxdx\int_{0}^{\pi/2}{x^{9}\cos xdx}

= 10[(x9sinx)0π/290π/2x8sinxdx]\left\lbrack (x^{9}\sin x)_{0}^{\pi/2} - 9\int_{0}^{\pi/2}{x^{8}\sin xdx} \right\rbrack

= 10[(p/2)9 – 9I8] Ž I10 + 90I8 = 10(p/2)9