Solveeit Logo

Question

Question: If μ is the mean of distribution \((y_{i},f_{i})\), then \(\sum f_{i}(y_{i} - \mu) =\)...

If μ is the mean of distribution (yi,fi)(y_{i},f_{i}), then fi(yiμ)=\sum f_{i}(y_{i} - \mu) =

A

M.D.

B

S.D.

C

0

D

Relative frequency

Answer

0

Explanation

Solution

We have, fi(yiμ)=fiyiμfi=μfiμfi=0\sum f_{i}(y_{i} - \mu) = \sum f_{i}y_{i} - \mu\sum f_{i} = \mu\sum f_{i} - \mu\sum f_{i} = 0

[μ=fiyifi]\left\lbrack \because\mu = \frac{\sum f_{i}y_{i}}{\sum f_{i}} \right\rbrack