Solveeit Logo

Question

Question: If is \[n\] an integer, prove that \[\tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}...

If is nn an integer, prove that \tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\\} = 1

Explanation

Solution

n is an integer which refers to the numbers which include whole numbers, positive numbers and negative numbers. An integer number cannot have a fraction or decimal. Integer numbers can be n=..........,2,1,0,1,2,3.........n = .........., - 2, - 1,0,1,2,3.........
In this question check the value of the given function weather it is equal to 1 by substituting the n with integer numbers.

Complete step by step solution:
Given nn is an integer number, so check for the value of the trigonometric function weather it is equal to 1 when integer values are substituted
Case 1: When n=0n = 0by putting this integer value we get

\tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\\} \\\ \tan \left\\{ {\dfrac{{0 \times \pi }}{2} + {{\left( { - 1} \right)}^0}\dfrac{\pi }{4}} \right\\} \\\ \tan \left\\{ {0 + \dfrac{\pi }{4}} \right\\} \\\ \tan \left( {\dfrac{\pi }{4}} \right) = 1 \\\

Hence we can say \tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\\} = 1if n=0n = 0since tan(π4)=1\tan \left( {\dfrac{\pi }{4}} \right) = 1
Case 2: Whenn=1n = 1by putting this integer value we get

\tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\\} \\\ \tan \left\\{ {\dfrac{{1 \times \pi }}{2} + {{\left( { - 1} \right)}^1}\dfrac{\pi }{4}} \right\\} \\\ \tan \left\\{ {\dfrac{\pi }{2} - \dfrac{\pi }{4}} \right\\} \\\ \tan \left( {\dfrac{\pi }{4}} \right) = 1 \\\

Hence we can say \tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\\} = 1 if n=1n = 1 since tan(π4)=1\tan \left( {\dfrac{\pi }{4}} \right) = 1
Case 3: When n=2n = 2 by putting this integer value we get

\tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\\} \\\ \tan \left\\{ {\dfrac{{2 \times \pi }}{2} + {{\left( { - 1} \right)}^2}\dfrac{\pi }{4}} \right\\} \\\ \tan \left\\{ {\pi + \dfrac{\pi }{4}} \right\\} \\\ \tan \left( {\dfrac{\pi }{4}} \right) = 1 \\\

Hence, we can say \tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\\} = 1if n=2n = 2 since tan(π4)=1\tan \left( {\dfrac{\pi }{4}} \right) = 1
Case 4: Whenn=3n = 3 by putting this integer value we get

\tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\\} \\\ \tan \left\\{ {\dfrac{{3 \times \pi }}{2} + {{\left( { - 1} \right)}^3}\dfrac{\pi }{4}} \right\\} \\\ \tan \left\\{ {\dfrac{{3\pi }}{2} - \dfrac{\pi }{4}} \right\\} \\\ \tan \left( {\dfrac{{5\pi }}{4}} \right) = 1 \\\

Hence, we can say \tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\\} = 1if n=3n = 3 since tan(π4)=1\tan \left( {\dfrac{\pi }{4}} \right) = 1
So the trigonometric function \tan \left\\{ {\dfrac{{n\pi }}{2} + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right\\} = 1 when the values of integers are n=0,1,2,3.........n = 0,1,2,3.........\infty

Note: Trigonometric functions have different values when they lie in the four quadrants.
The trigonometric values of a tan function are positive when they lie in the first and third quadrants, which are ranging from 090{0^ \circ } - {90^ \circ }&180270{180^ \circ } - {270^ \circ }.