Solveeit Logo

Question

Question: If ∆ is area of ∆ABC and length of two sides are 3 & 5 respectively, if third side is c, then...

If ∆ is area of ∆ABC and length of two sides are
3 & 5 respectively, if third side is c, then

A

∆ ≤c2+16c+64123\frac{c^{2} + 16c + 64}{12\sqrt{3}}

B

∆ = c2+16c+548\frac{c^{2} + 16c + 54}{8}

C

∆>c2+16c+7443\frac{c^{2} + 16c + 74}{4\sqrt{3}}

D

None of these

Answer

∆ ≤c2+16c+64123\frac{c^{2} + 16c + 64}{12\sqrt{3}}

Explanation

Solution

We know A.M. ≥ G.M.

sa+sb+sc3\frac{s - a + s - b + s - c}{3}(sa)(sb)(sc)3\sqrt[3]{(s - a)(s - b)(s - c)}

s3\frac{s}{3}(Δ2s)1/3\left( \frac{\Delta^{2}}{s} \right)^{1/3}

∆ ≤ s233\frac{s^{2}}{3\sqrt{3}}

∆ ≤c2+16c+64123\frac{c^{2} + 16c + 64}{12\sqrt{3}}