Solveeit Logo

Question

Question: If inverse trigonometric function is given as \(\cos \left\\{ {{{\tan }^{ - 1}}\left( {\sin \left( {...

If inverse trigonometric function is given as \cos \left\\{ {{{\tan }^{ - 1}}\left( {\sin \left( {{{\cot }^{ - 1}}x} \right)} \right)} \right\\} = {\left( {\dfrac{{{x^a} + 1}}{{{x^b} + 2}}} \right)^{\dfrac{1}{c}}}. Find the value of a+b+ca + b + c.
A. 3 B. 4 C. 5 D. 6  {\text{A}}{\text{. 3}} \\\ {\text{B}}{\text{. 4}} \\\ {\text{C}}{\text{. 5}} \\\ {\text{D}}{\text{. 6}} \\\

Explanation

Solution

Hint: Here, we will be converting the inverse trigonometric functions into a trigonometric function next to the inverse trigonometric function so that they are just left with the angle.

Complete step-by-step solution:
Given, \cos \left\\{ {{{\tan }^{ - 1}}\left( {\sin \left( {{{\cot }^{ - 1}}x} \right)} \right)} \right\\} = {\left( {\dfrac{{{x^a} + 1}}{{{x^b} + 2}}} \right)^{\dfrac{1}{c}}}{\text{ }} \to {\text{(1)}}
Consider θ=cot1xcotθ=x\theta = {\cot ^{ - 1}}x \Rightarrow \cot \theta = x, the diagram corresponding to this function is shown in Figure 1.

Equation (1), becomes
\cos \left\\{ {{{\tan }^{ - 1}}\left( {\sin \theta } \right)} \right\\} = {\left( {\dfrac{{{x^a} + 1}}{{{x^b} + 2}}} \right)^{\dfrac{1}{c}}}{\text{ }} \to {\text{(2)}}
Here we will convert this inverse cotangent trigonometric function into inverse sine trigonometric function.
θ=cot1xcotθ=x1=BasePerpendicular\theta = {\cot ^{ - 1}}x \Rightarrow \cot \theta = \dfrac{x}{1} = \dfrac{{{\text{Base}}}}{{{\text{Perpendicular}}}}
Base=x\Rightarrow {\text{Base}} = x and Perpendicular=1{\text{Perpendicular}} = 1
As according to Pythagoras theorem in a right angled triangle, we can write
(Hypotenuse)2=(Perpendicular)2 + (Base)2(Hypotenuse)2=12+x2Hypotenuse=1+x2{\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2}{\text{ + }}{\left( {{\text{Base}}} \right)^2} \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {1^2} + {x^2} \Rightarrow {\text{Hypotenuse}} = \sqrt {1 + {x^2}} As, sinθ=PerpendicularHypotenuse=11+x2θ=sin1[11+x2]\sin \theta = \dfrac{{{\text{Perpendicular}}}}{{{\text{Hypotenuse}}}} = \dfrac{1}{{\sqrt {1 + {x^2}} }} \Rightarrow \theta = {\sin ^{ - 1}}\left[ {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right]
Hence equation (2) becomes
\cos \left\\{ {{{\tan }^{ - 1}}\left( {\sin \left( {{{\sin }^{ - 1}}\left[ {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right]} \right)} \right)} \right\\} = {\left( {\dfrac{{{x^a} + 1}}{{{x^b} + 2}}} \right)^{\dfrac{1}{c}}}
We know that sin(sin1β)=β\sin \left( {{{\sin }^{ - 1}}\beta } \right) = \beta , the above equation becomes
\Rightarrow \cos \left\\{ {{{\tan }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)} \right\\} = {\left( {\dfrac{{{x^a} + 1}}{{{x^b} + 2}}} \right)^{\dfrac{1}{c}}}{\text{ }} \to {\text{(3)}}
Now let tan1(11+x2)=αtanα=11+x2=PerpendicularBase{\tan ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right) = \alpha \Rightarrow \tan \alpha = \dfrac{1}{{\sqrt {1 + {x^2}} }} = \dfrac{{{\text{Perpendicular}}}}{{{\text{Base}}}}, the diagram corresponding to this function is shown in Figure 2.


Equation (3) becomes,
cosα=(xa+1xb+2)1c (4)\Rightarrow \cos \alpha = {\left( {\dfrac{{{x^a} + 1}}{{{x^b} + 2}}} \right)^{\dfrac{1}{c}}}{\text{ }} \to {\text{(4)}}
Here we will convert this inverse tangent trigonometric function into inverse cosine trigonometric function.
Perpendicular=1\Rightarrow {\text{Perpendicular}} = 1 and Base=1+x2{\text{Base}} = \sqrt {1 + {x^2}}
Again according to Pythagoras theorem in a right angled triangle, we can write
(Hypotenuse)2=(Perpendicular)2 + (Base)2(Hypotenuse)2=12+(1+x2)2=1+1+x2 Hypotenuse=2+x2  {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Perpendicular}}} \right)^2}{\text{ + }}{\left( {{\text{Base}}} \right)^2} \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {1^2} + {\left( {\sqrt {1 + {x^2}} } \right)^2} = 1 + 1 + {x^2} \\\ \Rightarrow {\text{Hypotenuse}} = \sqrt {2 + {x^2}} \\\
As, cosα=BaseHypotenuse=1+x22+x2=1+x22+x2α=cos1[1+x22+x2]\cos \alpha = \dfrac{{{\text{Base}}}}{{{\text{Hypotenuse}}}} = \dfrac{{\sqrt {1 + {x^2}} }}{{\sqrt {2 + {x^2}} }} = \sqrt {\dfrac{{1 + {x^2}}}{{2 + {x^2}}}} \Rightarrow \alpha = {\cos ^{ - 1}}\left[ {\sqrt {\dfrac{{1 + {x^2}}}{{2 + {x^2}}}} } \right]
Hence equation (4) becomes
\Rightarrow \cos \left\\{ {{{\cos }^{ - 1}}\left[ {\sqrt {\dfrac{{1 + {x^2}}}{{2 + {x^2}}}} } \right]} \right\\} = {\left( {\dfrac{{{x^a} + 1}}{{{x^b} + 2}}} \right)^{\dfrac{1}{c}}}
We know that cos(cos1β)=β\cos \left( {{{\cos }^{ - 1}}\beta } \right) = \beta , the above equation becomes
1+x22+x2=(xa+1xb+2)1c (x2+1x2+2)12=(xa+1xb+2)1c (5)  \Rightarrow \sqrt {\dfrac{{1 + {x^2}}}{{2 + {x^2}}}} = {\left( {\dfrac{{{x^a} + 1}}{{{x^b} + 2}}} \right)^{\dfrac{1}{c}}} \\\ \Rightarrow {\left( {\dfrac{{{x^2} + 1}}{{{x^2} + 2}}} \right)^{\dfrac{1}{2}}} = {\left( {\dfrac{{{x^a} + 1}}{{{x^b} + 2}}} \right)^{\dfrac{1}{c}}}{\text{ }} \to {\text{(5)}} \\\
On comparing equation (5), the values of the unknowns obtained are a=2a = 2, b=2b = 2 and c=2c = 2
Therefore, a+b+c=2+2+2=6a + b + c = 2 + 2 + 2 = 6
Hence, option D is correct.

Note: In these types of problems, conversion of trigonometric functions is required so that the next trigonometric function is eliminated with the inverse trigonometric function.