Question
Question: If \(\int_{}^{}\sqrt{1 + \sec x}\)dx = K sin<sup>–1</sup> ((x)) + c then –...
If ∫1+secxdx = K sin–1 ((x)) + c then –
A
(x) = 2 sin (x/ 2)
B
(x) = 2cos (x/2), K= 2
C
(x) = 2tan (x/2), K = 2
D
(x) =2sin (x/2), K =2
Answer
(x) = 2 sin (x/ 2)
Explanation
Solution
1+secxdx= cosx1+cosx= 1−2sin2x/22cosx/2so putting
sin x/2 = t, we have
∫1+secxdx= ∫1−2sin2x/22cosx/2dx
= 2 sin–1 2t + c = 2 sin–1 (2 sin x/2) + c
So, (x) = 2sin x/2 and K = 2