Solveeit Logo

Question

Question: If \(\int_{}^{}\sqrt{1 + \sec x}\)dx = K sin<sup>–1</sup> (ƒ(x)) + c then –...

If 1+secx\int_{}^{}\sqrt{1 + \sec x}dx = K sin–1 (ƒ(x)) + c then –

A

ƒ(x) = 2\sqrt{2} sin (x/ 2)

B

ƒ(x) = 2\sqrt{2}cos (x/2), K= 2

C

ƒ(x) = 2\sqrt{2}tan (x/2), K = 2

D

ƒ(x) =2\sqrt{2}sin (x/2), K =2\sqrt{2}

Answer

ƒ(x) = 2\sqrt{2} sin (x/ 2)

Explanation

Solution

1+secx\sqrt{1 + \sec x}dx= 1+cosxcosx\sqrt{\frac{1 + \cos x}{\cos x}}= 2cosx/212sin2x/2\frac{\sqrt{2}\cos x/2}{\sqrt{1 - 2\sin^{2}x/2}}so putting

sin x/2 = t, we have

1+secx\int_{}^{}\sqrt{1 + \sec x}dx= 2cosx/212sin2x/2\int_{}^{}\frac{\sqrt{2}\cos x/2}{\sqrt{1 - 2\sin^{2}x/2}}dx

= 2 sin–1 2\sqrt{2}t + c = 2 sin–1 (2\sqrt{2} sin x/2) + c

So, ƒ(x) = 2\sqrt{2}sin x/2 and K = 2