Solveeit Logo

Question

Question: If \(\int_{}^{}\sqrt{1 + \sec x}\)dx = 2 (ƒog) (x) + C, then –...

If 1+secx\int_{}^{}\sqrt{1 + \sec x}dx = 2 (ƒog) (x) + C, then –

A

ƒ(x) = sec x – 1

B

ƒ(x) = 2 tan–1x

C

ƒ(x) = secx1\sqrt{\sec x - 1}q

D

None of these

Answer

ƒ(x) = secx1\sqrt{\sec x - 1}q

Explanation

Solution

1+secx\int \sqrt { 1 + \sec x }dx = secx.tanxsecx.secx1\int_{}^{}\frac{\sec x.\tan x}{\sec x.\sqrt{\sec x - 1}}dx

= tanxsecx1\int \frac { \tan x } { \sec x - 1 } dx

(Put sec x = t Ž sec x tan x dx = dt)

=

= 2 (where y2 = t – 1)

= 2 tan–1 y + C = 2 tan–1 secx1\sqrt{\sec x–1} + C

\ ƒ(x) = tan–1 x and g(x) = secx1\sqrt{\sec x–1}.