Solveeit Logo

Question

Question: If \(\int_{}^{}{\sin^{3}x\mspace{6mu}.\mspace{6mu}\cos x\mspace{6mu} dx =}\), then \(\frac{\sin^{4}x...

If sin3x6mu.6mucosx6mudx=\int_{}^{}{\sin^{3}x\mspace{6mu}.\mspace{6mu}\cos x\mspace{6mu} dx =}, then sin4xcos2x8+c\frac{\sin^{4}x\cos^{2}x}{8} + c

A

4sin4x+c4\sin^{4}x + c

B

a3x+3dx=\int_{}^{}{a^{3x + 3}dx} =

C

a3x+3loga+c\frac{a^{3x + 3}}{\log a} + c

D

a3x+33loga+c\frac{a^{3x + 3}}{3\log a} + c

Answer

a3x+3loga+c\frac{a^{3x + 3}}{\log a} + c

Explanation

Solution

Given that

12log(logtanx2)+c\frac{1}{2}\log\left( {logtan}\frac{x}{2} \right) + c

1cos2x(1tanx)2dx=\int_{}^{}{\frac{1}{\cos^{2}x(1 - \tan x)^{2}}dx =}

1tanx1+c\frac{1}{\tan x - 1} + c

11tanx+c\frac{1}{1 - \tan x} + c

131(1tanx)3+c- \frac{1}{3}\frac{1}{(1 - \tan x)^{3}} + c