Solveeit Logo

Question

Question: If \(\int_{}^{}{\sec x\mspace{6mu} dx =}\) then \({logtan}\left( \frac{\pi}{8} + \frac{x}{2} \right)...

If secx6mudx=\int_{}^{}{\sec x\mspace{6mu} dx =} then logtan(π8+x2)+c{logtan}\left( \frac{\pi}{8} + \frac{x}{2} \right) + c is.

A

1+sinx6mudx=\int_{}^{}{\sqrt{1 + \sin x}\mspace{6mu} dx =}

B

12(sinx2+cosx2)+c\frac{1}{2}\left( \sin\frac{x}{2} + \cos\frac{x}{2} \right) + c

C

12(sinx2cosx2)+c\frac{1}{2}\left( \sin\frac{x}{2} - \cos\frac{x}{2} \right) + c

D

21+sinx+c2\sqrt{1 + \sin x} + c

Answer

1+sinx6mudx=\int_{}^{}{\sqrt{1 + \sin x}\mspace{6mu} dx =}

Explanation

Solution

Sol. Trick : Let tan4x6mudx=\int_{}^{}{\tan^{4}x\mspace{6mu} dx =} thentan3xtanx+x+c\tan^{3}x - \tan x + x + c

13tan3xtanx+x+c\frac{1}{3}\tan^{3}x - \tan x + x + c