Solveeit Logo

Question

Question: If \(\int_{}^{}{g(x)dx}\)= g(x), then \(\int_{}^{}{g(x)\{ f(x) + f'(x)\} dx}\)is equal to-...

If g(x)dx\int_{}^{}{g(x)dx}= g(x), then g(x){f(x)+f(x)}dx\int_{}^{}{g(x)\{ f(x) + f'(x)\} dx}is equal to-

A

g(x) f(x) – g(x) f ¢(x) + c

B

g(x) f ¢(x) + c

C

g(x) f(x) + c

D

g(x) f2 (x) + c

Answer

g(x) f(x) + c

Explanation

Solution

I = g(x){f(x)+f(x)}dx\int \mathrm { g } ( \mathrm { x } ) \left\{ \mathrm { f } ( \mathrm { x } ) + \mathrm { f } ^ { \prime } ( \mathrm { x } ) \right\} \mathrm { dx } using ILATE, we get

I = f(x) (f(x)g(x)dx)\int \left( f ^ { \prime } ( x ) \cdot \int g ( x ) d x \right)dx

+

I = f(x) g(x) –+

I = f(x) g(x) + c