Question
Question: If \(\int_{}^{}{g(x)dx}\)= g(x), then \(\int_{}^{}{g(x)\{ f(x) + f'(x)\} dx}\)is equal to-...
If ∫g(x)dx= g(x), then ∫g(x){f(x)+f′(x)}dxis equal to-
A
g(x) f(x) – g(x) f ¢(x) + c
B
g(x) f ¢(x) + c
C
g(x) f(x) + c
D
g(x) f2 (x) + c
Answer
g(x) f(x) + c
Explanation
Solution
I = ∫g(x){f(x)+f′(x)}dx using ILATE, we get
I = f(x) – ∫(f′(x)⋅∫g(x)dx)dx
+
I = f(x) g(x) –+
I = f(x) g(x) + c