Solveeit Logo

Question

Question: If \(\int_{}^{}{f(x)}\)sin x cos x dx = \(\frac{1}{2(b^{2} - a^{2})}\)ln f(x) + c, then f(x) is –...

If f(x)\int_{}^{}{f(x)}sin x cos x dx = 12(b2a2)\frac{1}{2(b^{2} - a^{2})}ln f(x) + c, then f(x) is –

A

1asinx+bcosx\frac{1}{a\sin x + b\cos x}

B

1a2sin2x+b2cos2x\frac{1}{a^{2}\sin^{2}x + b^{2}\cos^{2}x}

C

1a2sinx+b2cosx\frac{1}{a^{2}\sin x + b^{2}\cos x}

D

1asin2x+bcos2x\frac{1}{a\sin^{2}x + b\cos^{2}x}

Answer

1a2sin2x+b2cos2x\frac{1}{a^{2}\sin^{2}x + b^{2}\cos^{2}x}

Explanation

Solution

Given f(x)\int_{}^{}{f(x)}sin x cos x dx = 12(b2a2)\frac{1}{2(b^{2} - a^{2})} ln f(x) + c

Differentiating both sides w.r.t.x then

f(x) sin x cos x = 12(b2a2)\frac{1}{2(b^{2} - a^{2})}. f(x)f(x)\frac{f'(x)}{f(x)}

Ž 2(b2 – a2) sin x cos = f(x){f(x)}2\frac{f'(x)}{\{ f(x)\}^{2}}

Ž 2b2 sin x cos x – 2a2 sin x cos x = f(x){f(x)}2\frac{f'(x)}{\{ f(x)\}^{2}}

Integrating both side w.r.t.x we get

–b2 cos2 x – a2 sin2 x = – 1f(x)\frac{1}{f(x)}

Or f(x) = 1(a2sin2x+b2cos2x)\frac{1}{(a^{2}\sin^{2}x + b^{2}\cos^{2}x)}