Question
Question: If \(\int_{}^{}{f(x)}\)sin x cos x dx = \(\frac{1}{2(b^{2} - a^{2})}\)ln f(x) + c, then f(x) is –...
If ∫f(x)sin x cos x dx = 2(b2−a2)1ln f(x) + c, then f(x) is –
A
asinx+bcosx1
B
a2sin2x+b2cos2x1
C
a2sinx+b2cosx1
D
asin2x+bcos2x1
Answer
a2sin2x+b2cos2x1
Explanation
Solution
Given ∫f(x)sin x cos x dx = 2(b2−a2)1 ln f(x) + c
Differentiating both sides w.r.t.x then
f(x) sin x cos x = 2(b2−a2)1. f(x)f′(x)
Ž 2(b2 – a2) sin x cos = {f(x)}2f′(x)
Ž 2b2 sin x cos x – 2a2 sin x cos x = {f(x)}2f′(x)
Integrating both side w.r.t.x we get
–b2 cos2 x – a2 sin2 x = – f(x)1
Or f(x) = (a2sin2x+b2cos2x)1