Question
Question: If \(\int_{}^{}{f(x)dx} = xe^{- \log|x|} + f(x),\) then \(f(x)\) is...
If ∫f(x)dx=xe−log∣x∣+f(x), then f(x) is
A
1
B
0
C
cex
D
logx
Answer
cex
Explanation
Solution
∫f(x)dx=xelog∣x1∣+f(x)⇒∫f(x)dx=∣x∣x+f(x)
On differentiating both sides , we get
f(x)=0+f′(x)
We know dxd(ex)=ex,∴f(x)=cex.