Solveeit Logo

Question

Question: If \(\int_{}^{}\frac{xe^{x}}{\sqrt{1 + e^{x}}}\)dx = ƒ(x) \(\sqrt{1 + e^{x}}\)– 2 log [g(x)] + c, th...

If xex1+ex\int_{}^{}\frac{xe^{x}}{\sqrt{1 + e^{x}}}dx = ƒ(x) 1+ex\sqrt{1 + e^{x}}– 2 log [g(x)] + c, then find the value of ƒ(x) –

A

ƒ(x) = 2x – 4, g(x) = 1+ex11+ex+1\frac{\sqrt{1 + e^{x}} - 1}{\sqrt{1 + e^{x}} + 1}

B

ƒ(x) = 2x + 4, g(x) = 1+ex11+ex+1\frac{\sqrt{1 + e^{x}} - 1}{\sqrt{1 + e^{x}} + 1}

C

ƒ(x) = 2x – 1, g(x) = 1+ex11+ex+1\frac{\sqrt{1 + e^{x}} - 1}{\sqrt{1 + e^{x}} + 1}

D

None of these

Answer

ƒ(x) = 2x – 4, g(x) = 1+ex11+ex+1\frac{\sqrt{1 + e^{x}} - 1}{\sqrt{1 + e^{x}} + 1}

Explanation

Solution

Let I = xex1+ex\int_{}^{}\frac{xe^{x}}{\sqrt{1 + e^{x}}}dx

Let 1 + ex = t2 Ž ex dx = 2t dt \ I = 2 log\int_{}^{\int}\log (t2 – 1) dt

=2 [tlog(t21)2t2t21dt]\left[ \mathrm { t } \log \left( \mathrm { t } ^ { 2 } - 1 \right) - 2 \int \frac { \mathrm { t } ^ { 2 } } { \mathrm { t } ^ { 2 } - 1 } \mathrm { dt } \right]

=2

= 2x 1+ex\sqrt{1 + e^{x}}– 41+ex\sqrt{1 + e^{x}} – 2 log (1+ex11+ex+1)\left( \frac{\sqrt{1 + e^{x}} - 1}{\sqrt{1 + e^{x}} + 1} \right) + c

But xexdx1+ex\int_{}^{}\frac{xe^{x}dx}{\sqrt{1 + e^{x}}}= ƒ(x) 1+ex\sqrt{1 + e^{x}}– 2 log [g(x)] + c

\ ƒ(x) = 2x – 4

And g(x) = 1+ex11+ex+1\frac{\sqrt{1 + e^{x}} - 1}{\sqrt{1 + e^{x}} + 1}.