Solveeit Logo

Question

Question: If \(\int_{}^{}\frac{\sin x}{\sin(x - \alpha)}\)dx = Ax + B log sin (x – a) + c then value of (A, B)...

If sinxsin(xα)\int_{}^{}\frac{\sin x}{\sin(x - \alpha)}dx = Ax + B log sin (x – a) + c then value of (A, B) is

A

(– sin a, cos a)

B

(cos a, sin a)

C

(sin a, cos a)

D

(– cos a, sin a)

Answer

(cos a, sin a)

Explanation

Solution

sin(xα+α)sin(xα)\int \frac { \sin ( x - \alpha + \alpha ) } { \sin ( x - \alpha ) }dx

= sin(xα)cosα+cos(xα)sinαsin(xα)\int \frac { \sin ( x - \alpha ) \cos \alpha + \cos ( x - \alpha ) \sin \alpha } { \sin ( x - \alpha ) } dx

= cos a dx+sinαcot(xα)dx\int_{}^{}{dx + \sin\alpha}\int_{}^{}{\cot(x - \alpha)dx}= (cos a). x + sin a.

log {sin (x – a)} + c