Solveeit Logo

Question

Question: If \(\int_{}^{}\frac{f(x)dx}{{logsin}x}\) = log log sin x, then f(x) =...

If f(x)dxlogsinx\int_{}^{}\frac{f(x)dx}{{logsin}x} = log log sin x, then f(x) =

A

sin x

B

cos x

C

log sin x

D

cot x

Answer

cot x

Explanation

Solution

= log log sinx

Differentiating both sides, we get

f(x)logsinx\frac { f ( x ) } { \log \sin x } = cotxlogsinx\frac{\cot x}{{logsin}x} Ž f(x) = cotx.