Solveeit Logo

Question

Question: If \(\int_{}^{}\frac{e^{4x} - 1}{e^{2x}}\)log \(\left( \frac{e^{2x} + 1}{e^{2x} - 1} \right)\) dx = ...

If e4x1e2x\int_{}^{}\frac{e^{4x} - 1}{e^{2x}}log (e2x+1e2x1)\left( \frac{e^{2x} + 1}{e^{2x} - 1} \right) dx = t22\frac{t^{2}}{2}log t – t24\frac{t^{2}}{4}

i + u22\frac{u^{2}}{2} log u – u24\frac{u^{2}}{4} + c then –

A

t = e–x – ex, u = ex + e–x

B

t = ex – e–x, u = ex + e–x

C

t = ex + e–x, u = ex – e–x

D

None of these

Answer

t = ex + e–x, u = ex – e–x

Explanation

Solution

The integrand can be written as

(e2x – e–2x) log (ex + e–x) – (e2x – e–2x) log (ex – e–x)

= (ex + e–x) (ex –e–x) log (ex + e–x) – (ex + e–x) (ex – e–x)

log (ex – e–x).

Hence the given integral is equal to

ulogudu\int_{}^{}{u\log udu} (t = ex + e–x, u = ex – e–x)

= log t – 12\frac { 1 } { 2 } t\int_{}^{}tdt + u22\frac{u^{2}}{2} log u – 12\frac{1}{2} u\int_{}^{}u du

(integration by parts)

= log t –t24\frac{t^{2}}{4} + u22\frac{u^{2}}{2} log u u24\frac { \mathrm { u } ^ { 2 } } { 4 } – + c,

where t = ex + e–x and u = ex – e–x.