Solveeit Logo

Question

Question: If \(\int_{}^{}\frac{dx}{1 + \sin x} = \tan\left( \frac{x}{2} + a \right) + b,\) then...

If dx1+sinx=tan(x2+a)+b,\int_{}^{}\frac{dx}{1 + \sin x} = \tan\left( \frac{x}{2} + a \right) + b, then

A

a=π4,b=3a = \frac{\pi}{4},b = 3

B

a=π4,b=3a = \frac{- \pi}{4},b = 3

C

a=π4,b=arbitrary constanta = \frac{\pi}{4},b = \text{arbitrary constant}

D

a=π4,b=arbitrary constanta = \frac{- \pi}{4},b = \text{arbitrary constant}

Answer

a=π4,b=arbitrary constanta = \frac{- \pi}{4},b = \text{arbitrary constant}

Explanation

Solution

If a=ba = b, then dxa+bsinx=1acot(π4+x2)+c\int_{}^{}\frac{dx}{a + b\sin x} = - \frac{1}{a}\cot\left( \frac{\pi}{4} + \frac{x}{2} \right) + c

\therefore dx1+sinx=cot(π4+x2)\int_{}^{}{\frac{dx}{1 + \sin x} = - \cot\left( \frac{\pi}{4} + \frac{x}{2} \right)} = tan(π2π4x2)+c- \tan\left( \frac{\pi}{2} - \frac{\pi}{4} - \frac{x}{2} \right) + c =

tan(π4x2)+c- \tan\left( \frac{\pi}{4} - \frac{x}{2} \right) + c = tan(x2π4)+c\tan\left( \frac{x}{2} - \frac{\pi}{4} \right) + c

Hence a=π4a = \frac{- \pi}{4} and b=b = arbitrary constant.