Question
Question: If \(\int_{}^{}\frac{dx}{1 + \sin x} = \tan\left( \frac{x}{2} + a \right) + b,\) then...
If ∫1+sinxdx=tan(2x+a)+b, then
A
a=4π,b=3
B
a=4−π,b=3
C
a=4π,b=arbitrary constant
D
a=4−π,b=arbitrary constant
Answer
a=4−π,b=arbitrary constant
Explanation
Solution
If a=b, then ∫a+bsinxdx=−a1cot(4π+2x)+c
∴ ∫1+sinxdx=−cot(4π+2x) = −tan(2π−4π−2x)+c =
−tan(4π−2x)+c = tan(2x−4π)+c
Hence a=4−π and b= arbitrary constant.