Question
Question: If \(\int_{}^{}\frac{\cos^{4}x + 1}{\cot x - \tan x}\) dx = a cos<sup>2</sup>2x + b cos 2x + c log \...
If ∫cotx−tanxcos4x+1 dx = a cos22x + b cos 2x + c log | cos 2x | + l, l being a constant of integration then –
A
a = –81
B
b = –81
C
c = 85
D
a + b + c = 0
Answer
b = –81
Explanation
Solution
∫sinxcosx−cosxsinxcos4x+1dx = 21 ∫cos2x(cos4x+1)sin2xdx
= 21 ∫cos2x{(21+cos2x)2+1}sin 2x dx
= 81 ∫{cos2x(1+cos2x)2+4}sin 2x dx
put cos 2x = t ̃ (– sin 2x) 2dx = dt
sin 2x dx = –2dt
= –161 ∫t(1+t)2+4dt
=–161 ∫(t1+t2+2t+4)dt
= –161 ∫(2+t+t5)dt = –161 [2t+2t2+5log∣t∣]+ l
= –321cos2 2x –81cos 2x –165log |cos 2x| + l