Solveeit Logo

Question

Question: If \(\int_{}^{}\frac{\cos^{4}x + 1}{\cot x - \tan x}\) dx = a cos<sup>2</sup>2x + b cos 2x + c log \...

If cos4x+1cotxtanx\int_{}^{}\frac{\cos^{4}x + 1}{\cot x - \tan x} dx = a cos22x + b cos 2x + c log | cos 2x | + l, l being a constant of integration then –

A

a = –18\frac{1}{8}

B

b = –18\frac{1}{8}

C

c = 58\frac{5}{8}

D

a + b + c = 0

Answer

b = –18\frac{1}{8}

Explanation

Solution

cos4x+1cosxsinxsinxcosx\int \frac { \cos ^ { 4 } x + 1 } { \frac { \cos x } { \sin x } - \frac { \sin x } { \cos x } }dx = 12\frac { 1 } { 2 } (cos4x+1)sin2xcos2x\int_{}^{}\frac{(\cos^{4}x + 1)\sin 2x}{\cos 2x}dx

= 12\frac { 1 } { 2 } {(1+cos2x2)2+1}cos2x\int_{}^{}\frac{\left\{ \left( \frac{1 + \cos 2x}{2} \right)^{2} + 1 \right\}}{\cos 2x}sin 2x dx

= 18\frac { 1 } { 8 } {(1+cos2x)2+4cos2x}\int_{}^{}\left\{ \frac{(1 + \cos 2x)^{2} + 4}{\cos 2x} \right\}sin 2x dx

put cos 2x = t ̃ (– sin 2x) 2dx = dt

sin 2x dx = –dt2\frac{dt}{2}

= –116\frac { 1 } { 16 } (1+t)2+4t\int_{}^{}\frac{(1 + t)^{2} + 4}{t}dt

=–116\frac { 1 } { 16 } (1+t2+2t+4t)\int_{}^{}\left( \frac{1 + t^{2} + 2t + 4}{t} \right)dt

= –116\frac { 1 } { 16 } (2+t+5t)\int_{}^{}\left( 2 + t + \frac{5}{t} \right)dt = –116\frac { 1 } { 16 } [2t+t22+5logt]\left\lbrack 2t + \frac{t^{2}}{2} + 5\log|t| \right\rbrack+ l

= –132\frac { 1 } { 32 }cos2 2x –18\frac{1}{8}cos 2x –516\frac{5}{16}log |cos 2x| + l