Solveeit Logo

Question

Question: If \(\int_{}^{}\frac{\cos x}{\sin(x–\alpha)}\) = A log sin (x – a) – Bx + C then (A, B) =...

If cosxsin(xα)\int_{}^{}\frac{\cos x}{\sin(x–\alpha)} = A log sin (x – a) – Bx + C then (A, B) =

A

(cosa, sin a)

B

(sin a, cos a)

C

(– cos a, sin a)

D

( – sin a, cos a)

Answer

(cosa, sin a)

Explanation

Solution

cos(xα+α)sin(xα)dx\int \frac { \cos ( \mathrm { x } - \alpha + \alpha ) } { \sin ( \mathrm { x } - \alpha ) } \mathrm { dx }

= cos(xα)cosαsin(xα)sinαsin(xα)dx\int \frac { \cos ( x - \alpha ) \cos \alpha - \sin ( x - \alpha ) \sin \alpha } { \sin ( x - \alpha ) } d x

= cosαcot(xα)dxsinαdx\cos \alpha \int \cot ( x - \alpha ) d x - \sin \alpha \int d x