Solveeit Logo

Question

Question: If \(\int_{}^{}\frac{2x^{2} + 3}{(x^{2} - 1)(x^{2} + 4)}dx = a\log\left( \frac{x - 1}{x + 1} \right)...

If 2x2+3(x21)(x2+4)dx=alog(x1x+1)+btan1(x2)+c\int_{}^{}\frac{2x^{2} + 3}{(x^{2} - 1)(x^{2} + 4)}dx = a\log\left( \frac{x - 1}{x + 1} \right) + b\tan^{- 1}\left( \frac{x}{2} \right) + c then values of a and b are

A

1,11, - 1

B

1,1- 1,1

C

1/2,1/21/2, - 1/2

D

1/2,1/21/2,1/2

Answer

1/2,1/21/2,1/2

Explanation

Solution

Put x2=yx^{2} = y

\therefore 2x2+3(x21)(x2+4)=2y+3(y1)(y+4)\frac { 2 x ^ { 2 } + 3 } { \left( x ^ { 2 } - 1 \right) \left( x ^ { 2 } + 4 \right) } = \frac { 2 y + 3 } { ( y - 1 ) ( y + 4 ) }

\Rightarrow 2y+3(y1)(y+4)=A(y1)+B(y+4)\frac{2y + 3}{(y - 1)(y + 4)} = \frac{A}{(y - 1)} + \frac{B}{(y + 4)}

\therefore 2y+3=A(y+4)+B(y1)2y + 3 = A(y + 4) + B(y - 1)

Comparing the coefficient of yyand constant terms

\Rightarrow A+B=2A + B = 2 and 4AB=34A - B = 3

A=1\therefore A = 1and B=1B = 1

\therefore I=1y1dx+1y+4dxI = \int \frac { 1 } { y - 1 } d x + \int \frac { 1 } { y + 4 } d x

\Rightarrow I=1x21dx+1x2+4dxI = \int \frac { 1 } { x ^ { 2 } - 1 } d x + \int \frac { 1 } { x ^ { 2 } + 4 } d x

\Rightarrow I=12logx1x+1+12tan1x2+cI = \frac { 1 } { 2 } \log \left| \frac { x - 1 } { x + 1 } \right| + \frac { 1 } { 2 } \tan ^ { - 1 } \frac { x } { 2 } + c

\therefore a=12a = \frac { 1 } { 2 } and b=12b = \frac { 1 } { 2 }