Solveeit Logo

Question

Question: If \(\int_{}^{}\frac{1}{x^{4} + 1}\)dx = \(\frac{1}{2\sqrt{2}}\)tan<sup>–1</sup>\(\left( \frac{x^{2}...

If 1x4+1\int_{}^{}\frac{1}{x^{4} + 1}dx = 122\frac{1}{2\sqrt{2}}tan–1(x212x)\left( \frac{x^{2} - 1}{\sqrt{2}x} \right) + A + c. Then A is equal to –

A

122\frac{1}{2\sqrt{2}}lox22x+1x2+2x+1\left| \frac{x^{2} - \sqrt{2}x + 1}{x^{2} + \sqrt{2}x + 1} \right|

B

142\frac{1}{4\sqrt{2}}log x22x+1x2+2x+1\left| \frac{x^{2} - \sqrt{2}x + 1}{x^{2} + \sqrt{2}x + 1} \right|

C

12\frac{1}{2}logx2+2x+1x22x+1\left| \frac{x^{2} + \sqrt{2}x + 1}{x^{2}–\sqrt{2}x + 1} \right|

D

142\frac{1}{4\sqrt{2}}log x2+2x+1x22x+1\left| \frac{x^{2} + \sqrt{2}x + 1}{x^{2}–\sqrt{2}x + 1} \right|

Answer

142\frac{1}{4\sqrt{2}}log x22x+1x2+2x+1\left| \frac{x^{2} - \sqrt{2}x + 1}{x^{2} + \sqrt{2}x + 1} \right|

Explanation

Solution

1x4+1\int \frac { 1 } { x ^ { 4 } + 1 }dx

= 1/x2x2+1/x2\int \frac { 1 / x ^ { 2 } } { x ^ { 2 } + 1 / x ^ { 2 } } dx

=12\frac { 1 } { 2 } 2/x2x2+1/x2\int_{}^{}\frac{2/x^{2}}{x^{2} + 1/x^{2}}dx

=dx

= 121+1x2x2+1x2\frac { 1 } { 2 } \int \frac { 1 + \frac { 1 } { x ^ { 2 } } } { x ^ { 2 } + \frac { 1 } { x ^ { 2 } } } dx – 12 11x2x2+1x2\frac{1}{2}\ \int_{}^{}\frac{1 - \frac{1}{x^{2}}}{x^{2} + \frac{1}{x^{2}}}dx

= 12\frac { 1 } { 2 } 1(x1x)2+2\int_{}^{}\frac{1}{\left( x - \frac{1}{x} \right)^{2} + 2}d(x1x)\left( x - \frac{1}{x} \right)

12\frac { 1 } { 2 } 1(x+1x)22\int_{}^{}\frac{1}{\left( x + \frac{1}{x} \right)^{2} - 2}d (x+1x)\left( x + \frac{1}{x} \right)

=12\frac { 1 } { 2 } duu2+(2)2\int_{}^{}\frac{du}{u^{2} + (\sqrt{2})^{2}}12\frac{1}{2} dvv2(2)2\int_{}^{}\frac{dv}{v^{2} - (\sqrt{2})^{2}},

Where u = x – 1x\frac{1}{x} and v = x +1x\frac{1}{x}

=12\frac{1}{2} × 12\frac{1}{\sqrt{2}} tan–1 (u2)\left( \frac{u}{\sqrt{2}} \right)12\frac{1}{2} × 122\frac{1}{2\sqrt{2}}log v2v+2\left| \frac{v - \sqrt{2}}{v + \sqrt{2}} \right| + c

= 122\frac{1}{2\sqrt{2}} tan–1 (x212x)\left( \frac{x^{2} - 1}{\sqrt{2}x} \right)142\frac{1}{4\sqrt{2}} log x22x+1x2+2x+1\left| \frac{x^{2} - \sqrt{2}x + 1}{x^{2} + \sqrt{2}x + 1} \right| + c

Hence (2) is the correct answer.