Question
Question: If \(\int_{}^{}\frac{1}{x^{4} + 1}\)dx = \(\frac{1}{2\sqrt{2}}\)tan<sup>–1</sup>\(\left( \frac{x^{2}...
If ∫x4+11dx = 221tan–1(2xx2−1) + A + c. Then A is equal to –
A
– 221lox2+2x+1x2−2x+1
B
– 421log x2+2x+1x2−2x+1
C
–21logx2–2x+1x2+2x+1
D
– 421log x2–2x+1x2+2x+1
Answer
– 421log x2+2x+1x2−2x+1
Explanation
Solution
∫x4+11dx
= ∫x2+1/x21/x2 dx
=21 ∫x2+1/x22/x2dx
=dx
= 21∫x2+x211+x21 dx – 21 ∫x2+x211−x21dx
= 21 ∫(x−x1)2+21d(x−x1)
– 21 ∫(x+x1)2−21d (x+x1)
=21 ∫u2+(2)2du– 21 ∫v2−(2)2dv,
Where u = x – x1 and v = x +x1
=21 × 21 tan–1 (2u)– 21 × 221log v+2v−2 + c
= 221 tan–1 (2xx2−1) – 421 log x2+2x+1x2−2x+1 + c
Hence (2) is the correct answer.