Solveeit Logo

Question

Question: If \(\int_{}^{}\frac{1}{\sqrt{x}}\sin\sqrt{x}\mspace{6mu} dx =\) and \(- \frac{1}{2}\cos\sqrt{x} + c...

If 1xsinx6mudx=\int_{}^{}\frac{1}{\sqrt{x}}\sin\sqrt{x}\mspace{6mu} dx = and 12cosx+c- \frac{1}{2}\cos\sqrt{x} + c, then 2cosx+c- 2\cos\sqrt{x} + c

A

tan(ex)x+c\tan(e^{x}) - x + c

B

ex(tanex1)+ce^{x}(\tan e^{x} - 1) + c

C

sec(ex)+c\sec(e^{x}) + c

D

tan(ex)ex+c\tan(e^{x}) - e^{x} + c

Answer

sec(ex)+c\sec(e^{x}) + c

Explanation

Solution

Given that 3(1+x2)3/2+c3(1 + x^{2})^{3/2} + c and 13(1+x2)3/2+c\frac{1}{3}(1 + x^{2})^{3/2} + c

ex(x+1)cos2(xex)dx=\int_{}^{}{\frac{e^{x}(x + 1)}{\cos^{2}(xe^{x})}dx =}. If tan(xex)+c\tan(xe^{x}) + c then sec(xex)tan(xex)+c\sec(xe^{x})\tan(xe^{x}) + ctan(xex)+c- \tan(xe^{x}) + c.

Hence cosxxdx=\int_{}^{}\frac{\cos\sqrt{x}}{\sqrt{x}}dx =