Solveeit Logo

Question

Question: If \(\int_{}^{}{e^{x}\sin xdx = \frac{1}{2}e^{x}.a + c,}\) then \(a =\)...

If exsinxdx=12ex.a+c,\int_{}^{}{e^{x}\sin xdx = \frac{1}{2}e^{x}.a + c,} then a=a =

A

sinxcosx\sin x - \cos x

B

cosxsinx\cos x - \sin x

C

tanx+c\tan x + c

D

None of these

Answer

sinxcosx\sin x - \cos x

Explanation

Solution

exsinxdx=ex12+12(1.sinx1.cosx)+c=ex2(sinxcosx)+c\int_{}^{}{e^{x}\sin xdx = \frac{e^{x}}{1^{2} + 1^{2}}(1.\sin x - 1.\cos x) + c} = \frac{e^{x}}{2}(\sin x - \cos x) + c

Clearly a=(sinxcosx)a = (\sin x - \cos x)