Question
Question: If \(\int_{0}^{y}{\cos t^{2}dt}\) = \(\int_{0}^{x^{2}}\frac{\sin t}{t}\)dt. Then \(\frac{dy}{dx}\) i...
If ∫0ycost2dt = ∫0x2tsintdt. Then dxdy is equal to -
A
xcosy2sinx
B
xcosy2sinx2
C
xcosy22sinx2
D
cosy22sinx2
Answer
xcosy22sinx2
Explanation
Solution
On differentiating under the integral sign,
we get (cos y2) dxdy = x2sinx2.2x
Ž dxdy = xcosy22sinx2