Solveeit Logo

Question

Question: If \(\int_{0}^{x}{f(t)}dt = x + \int_{x}^{1}{tf(t)}dt,\) then the value of f(1) is...

If 0xf(t)dt=x+x1tf(t)dt,\int_{0}^{x}{f(t)}dt = x + \int_{x}^{1}{tf(t)}dt, then the value of f(1) is

A

12\frac{1}{2}

B

0

C

1

D

12- \frac{1}{2}

Answer

12\frac{1}{2}

Explanation

Solution

0xf(t)dt=x+x1tf(t)dt,\int_{0}^{x}{f(t)dt} = x + \int_{x}^{1}{tf(t)dt,}

ddx(0xf(t)dt)=ddx(x+x1tf(t)dt)\frac{d}{dx}\left( \int_{0}^{x}{f(t)dt} \right) = \frac{d}{dx}\left( x + \int_{x}^{1}{tf(t)dt} \right)

f(x)=1+0xf(x)f(x) = 1 + 0 - xf(x)

[Using Leibnitz's Rule]

f(x)=1xf(x)f(x) = 1 - xf(x)

f(x)=1x+1f(1)=12f(x) = \frac{1}{x + 1} \Rightarrow f(1) = \frac{1}{2}