Solveeit Logo

Question

Question: If \(\int_{0}^{\pi}{xf(\sin x)dx = k\int_{0}^{\pi}{f(\sin x)dx}}\), then the value of k will be...

If 0πxf(sinx)dx=k0πf(sinx)dx\int_{0}^{\pi}{xf(\sin x)dx = k\int_{0}^{\pi}{f(\sin x)dx}}, then the value of k will be

A

π

B

π/2

C

π/4

D

1

Answer

π/2

Explanation

Solution

Given, 0πxf(sinx)dx=k0πf(sinx)dx\int_{0}^{\pi}{xf(\sin x)dx = k\int_{0}^{\pi}{f(\sin x)dx}}

0π(πx)f(sin(πx))dx=k0πf(sin(πx))dx\int_{0}^{\pi}{(\pi - x)f(\sin(\pi - x)})dx = k\int_{0}^{\pi}{f(\sin(\pi - x))dx}

π0πf(sinx)dx0πxf(sinx)dx=k0πf(sinx)dx\pi\int_{0}^{\pi}{f(\sin x)dx} - \int_{0}^{\pi}xf(\sin x)dx = k\int_{0}^{\pi}{f(\sin x)dx}

π0πf(sinx)dx2k0πf(sinx)dx=0\pi\int_{0}^{\pi}{f(\sin x)dx - 2k}\int_{0}^{\pi}{f(\sin x)dx = 0}(π2k)0πf(sinx)dx=0(\pi - 2k)\int_{0}^{\pi}{f(\sin x)dx = 0}

π2k=0k=π/2\pi - 2k = 0 \Rightarrow k = \pi ⥂ / ⥂ 2.