Question
Question: If \(\int_{0}^{\pi}{xf(\sin x)dx = k\int_{0}^{\pi}{f(\sin x)dx}}\), then the value of k will be...
If ∫0πxf(sinx)dx=k∫0πf(sinx)dx, then the value of k will be
A
π
B
π/2
C
π/4
D
1
Answer
π/2
Explanation
Solution
Given, ∫0πxf(sinx)dx=k∫0πf(sinx)dx
⇒ ∫0π(π−x)f(sin(π−x))dx=k∫0πf(sin(π−x))dx
⇒ π∫0πf(sinx)dx−∫0πxf(sinx)dx=k∫0πf(sinx)dx⇒
π∫0πf(sinx)dx−2k∫0πf(sinx)dx=0 ⇒ (π−2k)∫0πf(sinx)dx=0
∴ π−2k=0⇒k=π⥂/⥂2.