Question
Question: If \(\int_{0}^{\pi/2}{}\) log sin x dx = k, then \(\int_{0}^{\pi}{}\)log (1 + cos x) dx is given by...
If ∫0π/2 log sin x dx = k, then ∫0πlog (1 + cos x) dx is given by
A
p log 2 + 4k
B
p log 2 + 2k
C
p log 2 + k
D
p log 9 + k2
Answer
p log 2 + 4k
Explanation
Solution
I = ∫0πlog (1 + cos x) dx
= ∫0πlog (2 cos2 2x) dx
= ∫0πlog 2 dx + ∫0π log cos2 2x dx
= p log 2 + 2∫0πlog cos 2x dx
= p log 2 + 4∫0π/2 log cos x dx
= p log 2 + 4 ∫0π/2log cos (p/2 – x) dx
= p log 2 + 4 ∫0π/2 log sin x dx
= p log 2 + 4k