Solveeit Logo

Question

Question: If \(\int_{0}^{\pi/2}{}\) log sin x dx = k, then \(\int_{0}^{\pi}{}\)log (1 + cos x) dx is given by...

If 0π/2\int_{0}^{\pi/2}{} log sin x dx = k, then 0π\int_{0}^{\pi}{}log (1 + cos x) dx is given by

A

p log 2 + 4k

B

p log 2 + 2k

C

p log 2 + k

D

p log 9 + k2

Answer

p log 2 + 4k

Explanation

Solution

I = 0π\int_{0}^{\pi}{}log (1 + cos x) dx

= 0π\int_{0}^{\pi}{}log (2 cos2 x2\frac{x}{2}) dx

= 0π\int_{0}^{\pi}{}log 2 dx + 0π\int_{0}^{\pi}{} log cos2 x2\frac{x}{2} dx

= p log 2 + 20π\int_{0}^{\pi}{}log cos x2\frac{x}{2} dx

= p log 2 + 40π/2\int_{0}^{\pi/2}{} log cos x dx

= p log 2 + 4 0π/2\int_{0}^{\pi/2}{}log cos (p/2 – x) dx

= p log 2 + 4 0π/2\int_{0}^{\pi/2}{} log sin x dx

= p log 2 + 4k