Solveeit Logo

Question

Question: If $\int x^5 e^{-4x^3} dx = \frac{1}{48}e^{-4x^3} f(x) + C$, where C is a constant of integration, t...

If x5e4x3dx=148e4x3f(x)+C\int x^5 e^{-4x^3} dx = \frac{1}{48}e^{-4x^3} f(x) + C, where C is a constant of integration, then f(x) is equal to

A

4x3+14x^3 + 1

B

4x31-4x^3 - 1

C

2x31-2x^3 - 1

D

2x3+1-2x^3 + 1

Answer

-4x^3 - 1

Explanation

Solution

We can solve this problem using two methods: direct integration or differentiation.

Method 1: Direct Integration

Let's evaluate the integral x5e4x3dx\int x^5 e^{-4x^3} dx. This integral can be simplified using a substitution. Let t=4x3t = -4x^3.

Then, differentiate tt with respect to xx:

dt=12x2dxdt = -12x^2 dx

From this, we can express x2dxx^2 dx as:

x2dx=112dtx^2 dx = -\frac{1}{12} dt

Also, from the substitution t=4x3t = -4x^3, we have x3=t4x^3 = -\frac{t}{4}.

Now, rewrite the integral by splitting x5x^5 into x3x2x^3 \cdot x^2:

x5e4x3dx=x3e4x3x2dx\int x^5 e^{-4x^3} dx = \int x^3 \cdot e^{-4x^3} \cdot x^2 dx

Substitute x3=t4x^3 = -\frac{t}{4}, e4x3=ete^{-4x^3} = e^t, and x2dx=112dtx^2 dx = -\frac{1}{12} dt:

(t4)et(112dt)=t48etdt=148tetdt\int \left(-\frac{t}{4}\right) e^t \left(-\frac{1}{12} dt\right) = \int \frac{t}{48} e^t dt = \frac{1}{48} \int t e^t dt

Now, we need to evaluate the integral tetdt\int t e^t dt using integration by parts. The formula for integration by parts is udv=uvvdu\int u dv = uv - \int v du.

Let u=tu = t and dv=etdtdv = e^t dt. Then, du=dtdu = dt and v=etv = e^t. Applying the formula:

tetdt=tetetdt=tetet=et(t1)\int t e^t dt = t e^t - \int e^t dt = t e^t - e^t = e^t(t - 1)

Now, substitute this result back into our main integral:

x5e4x3dx=148et(t1)+C\int x^5 e^{-4x^3} dx = \frac{1}{48} e^t (t - 1) + C

Finally, substitute t=4x3t = -4x^3 back into the expression:

x5e4x3dx=148e4x3(4x31)+C\int x^5 e^{-4x^3} dx = \frac{1}{48} e^{-4x^3} (-4x^3 - 1) + C

Comparing this result with the given form 148e4x3f(x)+C\frac{1}{48}e^{-4x^3} f(x) + C, we can identify f(x)f(x):

f(x)=4x31f(x) = -4x^3 - 1

Method 2: Differentiation

Given the equation:

x5e4x3dx=148e4x3f(x)+C\int x^5 e^{-4x^3} dx = \frac{1}{48}e^{-4x^3} f(x) + C

Differentiate both sides with respect to xx. The derivative of an integral is the integrand itself:

x5e4x3=ddx[148e4x3f(x)]x^5 e^{-4x^3} = \frac{d}{dx} \left[ \frac{1}{48}e^{-4x^3} f(x) \right]

Apply the product rule for differentiation, ddx(uv)=uv+uv\frac{d}{dx}(uv) = u'v + uv', where u=148e4x3u = \frac{1}{48}e^{-4x^3} and v=f(x)v = f(x).

First, find the derivative of uu:

ddx(148e4x3)=148e4x3ddx(4x3)=148e4x3(12x2)=1248x2e4x3=14x2e4x3\frac{d}{dx}\left(\frac{1}{48}e^{-4x^3}\right) = \frac{1}{48} e^{-4x^3} \cdot \frac{d}{dx}(-4x^3) = \frac{1}{48} e^{-4x^3} (-12x^2) = -\frac{12}{48} x^2 e^{-4x^3} = -\frac{1}{4} x^2 e^{-4x^3}

Now apply the product rule:

x5e4x3=(14x2e4x3)f(x)+148e4x3f(x)x^5 e^{-4x^3} = \left(-\frac{1}{4} x^2 e^{-4x^3}\right) f(x) + \frac{1}{48} e^{-4x^3} f'(x)

Divide the entire equation by e4x3e^{-4x^3} (since e4x30e^{-4x^3} \neq 0):

x5=14x2f(x)+148f(x)x^5 = -\frac{1}{4} x^2 f(x) + \frac{1}{48} f'(x)

Multiply the entire equation by 48 to clear the denominators:

48x5=12x2f(x)+f(x)48x^5 = -12x^2 f(x) + f'(x)

Now, we can test the given options for f(x)f(x).

Let's test option (2): f(x)=4x31f(x) = -4x^3 - 1. If f(x)=4x31f(x) = -4x^3 - 1, then f(x)=ddx(4x31)=12x2f'(x) = \frac{d}{dx}(-4x^3 - 1) = -12x^2.

Substitute f(x)f(x) and f(x)f'(x) into the equation:

48x5=12x2(4x31)+(12x2)=(48x5+12x2)12x2=48x548x^5 = -12x^2 (-4x^3 - 1) + (-12x^2) = (48x^5 + 12x^2) - 12x^2 = 48x^5

Since both sides are equal, f(x)=4x31f(x) = -4x^3 - 1 is the correct function.