Question
Question: If $\int (x^{24}+x^{16}+x^8)(2x^{16}+3x^8+6)^{\frac{1}{8}}dx = $ $\frac{1}{\alpha}(2x^{24}+3x^{16}+...
If ∫(x24+x16+x8)(2x16+3x8+6)81dx=
α1(2x24+3x16+6x8)γβ+C (where C is constant of integration and β,γ are coprime numbers), then the value of (α+β+γ) is:

A
61
B
67
C
71
D
59
Answer
71
Explanation
Solution
To evaluate the integral ∫(x24+x16+x8)(2x16+3x8+6)81dx, we use a substitution method.
Let u=2x24+3x16+6x8. Then dxdu=48x23+48x15+48x7=48(x23+x15+x7) So, (x23+x15+x7)dx=481du.
The integral becomes: I=∫(x23+x15+x7)(2x24+3x16+6x8)81dx=∫u81(481du)=481∫u81du I=481(81+1u81+1)+C=481(89u89)+C=481⋅98u89+C=541u89+C
Substituting back u=2x24+3x16+6x8: I=541(2x24+3x16+6x8)89+C
Comparing with the given form α1(2x24+3x16+6x8)γβ+C, we have: α=54 γβ=89
Since β and γ are coprime, β=9 and γ=8.
Therefore, α+β+γ=54+9+8=71.