Solveeit Logo

Question

Question: If $\int (x^{24}+x^{16}+x^8)(2x^{16}+3x^8+6)^{\frac{1}{8}}dx = $ $\frac{1}{\alpha}(2x^{24}+3x^{16}+...

If (x24+x16+x8)(2x16+3x8+6)18dx=\int (x^{24}+x^{16}+x^8)(2x^{16}+3x^8+6)^{\frac{1}{8}}dx =

1α(2x24+3x16+6x8)βγ+C\frac{1}{\alpha}(2x^{24}+3x^{16}+6x^8)^{\frac{\beta}{\gamma}}+C (where C is constant of integration and β,γ\beta, \gamma are coprime numbers), then the value of (α+β+γ)(\alpha+\beta+\gamma) is:

A

61

B

67

C

71

D

59

Answer

71

Explanation

Solution

To evaluate the integral (x24+x16+x8)(2x16+3x8+6)18dx\int (x^{24}+x^{16}+x^8)(2x^{16}+3x^8+6)^{\frac{1}{8}}dx, we use a substitution method.

Let u=2x24+3x16+6x8u = 2x^{24}+3x^{16}+6x^8. Then dudx=48x23+48x15+48x7=48(x23+x15+x7)\frac{du}{dx} = 48x^{23} + 48x^{15} + 48x^7 = 48(x^{23} + x^{15} + x^7) So, (x23+x15+x7)dx=148du(x^{23} + x^{15} + x^7)dx = \frac{1}{48}du.

The integral becomes: I=(x23+x15+x7)(2x24+3x16+6x8)18dx=u18(148du)=148u18duI = \int (x^{23}+x^{15}+x^7) (2x^{24}+3x^{16}+6x^8)^{\frac{1}{8}} dx = \int u^{\frac{1}{8}} \left(\frac{1}{48}du\right) = \frac{1}{48} \int u^{\frac{1}{8}} du I=148(u18+118+1)+C=148(u9898)+C=14889u98+C=154u98+CI = \frac{1}{48} \left( \frac{u^{\frac{1}{8}+1}}{\frac{1}{8}+1} \right) + C = \frac{1}{48} \left( \frac{u^{\frac{9}{8}}}{\frac{9}{8}} \right) + C = \frac{1}{48} \cdot \frac{8}{9} u^{\frac{9}{8}} + C = \frac{1}{54} u^{\frac{9}{8}} + C

Substituting back u=2x24+3x16+6x8u = 2x^{24}+3x^{16}+6x^8: I=154(2x24+3x16+6x8)98+CI = \frac{1}{54} (2x^{24}+3x^{16}+6x^8)^{\frac{9}{8}} + C

Comparing with the given form 1α(2x24+3x16+6x8)βγ+C\frac{1}{\alpha}(2x^{24}+3x^{16}+6x^8)^{\frac{\beta}{\gamma}}+C, we have: α=54\alpha = 54 βγ=98\frac{\beta}{\gamma} = \frac{9}{8}

Since β\beta and γ\gamma are coprime, β=9\beta = 9 and γ=8\gamma = 8.

Therefore, α+β+γ=54+9+8=71\alpha+\beta+\gamma = 54 + 9 + 8 = 71.