Question
Question: If $\int x \sin^{-1}x dx = \frac{2x^2-1}{4}f(x) + \frac{x}{4}g(x) + C$, then:...
If ∫xsin−1xdx=42x2−1f(x)+4xg(x)+C, then:

f(x) = arcsin(x), g(x) = √(1-x^2)
Solution
To evaluate the integral ∫xsin−1xdx, we use integration by parts, which states ∫udv=uv−∫vdu.
Let u=sin−1x and dv=xdx. Then, we find du and v: du=dxd(sin−1x)dx=1−x21dx v=∫xdx=2x2
Now, substitute these into the integration by parts formula: ∫xsin−1xdx=2x2sin−1x−∫2x2⋅1−x21dx =2x2sin−1x−21∫1−x2x2dx
Next, we need to evaluate the integral I1=∫1−x2x2dx. We can rewrite the numerator x2 as −(1−x2)+1: I1=∫1−x21−(1−x2)dx=∫(1−x21−1−x21−x2)dx I1=∫(1−x21−1−x2)dx We know the standard integral formulas: ∫a2−x21dx=sin−1(ax) ∫a2−x2dx=2xa2−x2+2a2sin−1(ax)
For a=1: ∫1−x21dx=sin−1x ∫1−x2dx=2x1−x2+21sin−1x Substitute these back into I1: I1=sin−1x−(2x1−x2+21sin−1x) I1=sin−1x−2x1−x2−21sin−1x I1=21sin−1x−2x1−x2
Now, substitute I1 back into the main integral expression: ∫xsin−1xdx=2x2sin−1x−21(21sin−1x−2x1−x2)+C =2x2sin−1x−41sin−1x+4x1−x2+C Combine the terms with sin−1x: =(2x2−41)sin−1x+4x1−x2+C =42x2−1sin−1x+4x1−x2+C
The given form of the integral is 42x2−1f(x)+4xg(x)+C. By comparing our result with the given form, we can identify f(x) and g(x): f(x)=sin−1x g(x)=1−x2