Question
Mathematics Question on Methods of Integration
If = ∫xlog(1+x1)dx=f(x)log(x+1)+g(x)x2+Lx+C, then
A
f(x)=21x2
B
g(x)=logx
C
L=1
D
None of these
Answer
None of these
Explanation
Solution
∫xlog(1+x1)dx
=∫xlog(x+1)dx−∫xlogxdx
=2x2log(x+1)−21∫x+1x2dx−2x2logx+21∫xx2dx
=2x2log(x+1)−21∫(x−1+x+11)dx−2x2logx+41x2
=2x2log(x+1)−2x2logx−21(2x2−x)−21log(x+1)+41x2+C
=2x2log(x+1)−2x2logx−21log(x+1)+21x+C
Hence, f(x)=2x2−21,g(x)=−21logx and A=21