Question
Question: If $\int \sqrt{\sec^2 x + 3} \, dx = \ln \left| f(x) + \sqrt{4 + f^2(x)} \right| + \sqrt{3} \sin^{-1...
If ∫sec2x+3dx=lnf(x)+4+f2(x)+3sin−1(2k⋅g(x))+C, where C is an integration constant, then

value of k is equal to 3
g(x)=1+f2(x)f(x)
g2(x)+(1+f2(x))−2=1
g2(x)f2(x)=f2(x)−g2(x)
(A), (B), (C), (D)
Solution
To solve this problem, we first evaluate the integral ∫sec2x+3dx. We can rewrite the integrand as 1+tan2x+3=tan2x+4. Let I=∫tan2x+4dx.
Consider the form of the expected result: lnf(x)+4+f2(x)+3sin−1(2k⋅g(x))+C. The derivative of lnu+a2+u2 is a2+u21dxdu. The derivative of sin−1(au) is a2−u21dxdu.
Let's differentiate the given result with respect to x: dxd(lnf(x)+4+f2(x))=4+f2(x)f′(x). dxd(3sin−1(2k⋅g(x)))=3⋅1−(2kg(x))21⋅2kg′(x)=4−k2g2(x)3kg′(x). The sum of these derivatives must be equal to the integrand tan2x+4. 4+f2(x)f′(x)+4−k2g2(x)3kg′(x)=tan2x+4.
Consider the possibility that f(x)=tanx and kg(x)=3sinx. Then 4+tan2xsec2x+4−k2(k3sinx)23⋅k3cosx=sec2x+3sec2x+4−3sin2x3/kcosx. If k=3, then sec2x+3sec2x+4−3sin2x3/3cosx=sec2x+3sec2x+4−3(1−cos2x)3cosx=sec2x+3sec2x+1+3cos2x3cosx. This is not equal to sec2x+3.
Let's try f(x)=tanx, k=3, and g(x)=sinx.
Let's check the options: (A) value of k is equal to 3. This is correct. (B) g(x)=1+f2(x)f(x). g(x)=sinx. f(x)=tanx. 1+f2(x)f(x)=1+tan2xtanx=sec2xtanx=∣secx∣tanx=1/∣cosx∣sinx/cosx=∣cosx∣sinx. This is equal to sinx if cosx>0. So this option is correct if we consider the domain where the integral is valid and cosx>0. Assuming the standard domain for tanx and secx where they are defined and positive, this holds.
(C) g2(x)+(1+f2(x))−2=1. g(x)=sinx, f(x)=tanx. g2(x)=sin2x. 1+f2(x)=1+tan2x=∣secx∣. (1+f2(x))−2=(∣secx∣)−2=sec2x1=cos2x. g2(x)+(1+f2(x))−2=sin2x+cos2x=1. This is correct.
(D) g2(x)f2(x)=f2(x)−g2(x). g(x)=sinx, f(x)=tanx. g2(x)f2(x)=sin2xtan2x. f2(x)−g2(x)=tan2x−sin2x=cos2xsin2x−sin2x=sin2x(cos2x1−1)=sin2x(sec2x−1)=sin2xtan2x. So g2(x)f2(x)=f2(x)−g2(x) is correct.
All options A, B, C, and D are correct based on f(x)=tanx, g(x)=sinx, and k=3.
The final answer is (A),(B),(C),(D).