Solveeit Logo

Question

Question: If $\int \sqrt{\sec^2 x + 3} \, dx = \ln \left| f(x) + \sqrt{4 + f^2(x)} \right| + \sqrt{3} \sin^{-1...

If sec2x+3dx=lnf(x)+4+f2(x)+3sin1(kg(x)2)+C\int \sqrt{\sec^2 x + 3} \, dx = \ln \left| f(x) + \sqrt{4 + f^2(x)} \right| + \sqrt{3} \sin^{-1} \left( \frac{k \cdot g(x)}{2} \right) + C, where C is an integration constant, then

A

value of k is equal to 3\sqrt{3}

B

g(x)=f(x)1+f2(x)g(x) = \frac{f(x)}{\sqrt{1 + f^2(x)}}

C

g2(x)+(1+f2(x))2=1g^2(x) + \left( \sqrt{1 + f^2(x)} \right)^{-2} = 1

D

g2(x)f2(x)=f2(x)g2(x)g^2(x)f^2(x) = f^2(x) - g^2(x)

Answer

(A), (B), (C), (D)

Explanation

Solution

To solve this problem, we first evaluate the integral sec2x+3dx\int \sqrt{\sec^2 x + 3} \, dx. We can rewrite the integrand as 1+tan2x+3=tan2x+4\sqrt{1 + \tan^2 x + 3} = \sqrt{\tan^2 x + 4}. Let I=tan2x+4dxI = \int \sqrt{\tan^2 x + 4} \, dx.

Consider the form of the expected result: lnf(x)+4+f2(x)+3sin1(kg(x)2)+C\ln \left| f(x) + \sqrt{4 + f^2(x)} \right| + \sqrt{3} \sin^{-1} \left( \frac{k \cdot g(x)}{2} \right) + C. The derivative of lnu+a2+u2\ln \left| u + \sqrt{a^2 + u^2} \right| is 1a2+u2dudx\frac{1}{\sqrt{a^2 + u^2}} \frac{du}{dx}. The derivative of sin1(ua)\sin^{-1} \left( \frac{u}{a} \right) is 1a2u2dudx\frac{1}{\sqrt{a^2 - u^2}} \frac{du}{dx}.

Let's differentiate the given result with respect to xx: ddx(lnf(x)+4+f2(x))=f(x)4+f2(x)\frac{d}{dx} \left( \ln \left| f(x) + \sqrt{4 + f^2(x)} \right| \right) = \frac{f'(x)}{\sqrt{4 + f^2(x)}}. ddx(3sin1(kg(x)2))=311(kg(x)2)2kg(x)2=3kg(x)4k2g2(x)\frac{d}{dx} \left( \sqrt{3} \sin^{-1} \left( \frac{k \cdot g(x)}{2} \right) \right) = \sqrt{3} \cdot \frac{1}{\sqrt{1 - \left( \frac{k g(x)}{2} \right)^2}} \cdot \frac{k g'(x)}{2} = \frac{\sqrt{3} k g'(x)}{\sqrt{4 - k^2 g^2(x)}}. The sum of these derivatives must be equal to the integrand tan2x+4\sqrt{\tan^2 x + 4}. f(x)4+f2(x)+3kg(x)4k2g2(x)=tan2x+4\frac{f'(x)}{\sqrt{4 + f^2(x)}} + \frac{\sqrt{3} k g'(x)}{\sqrt{4 - k^2 g^2(x)}} = \sqrt{\tan^2 x + 4}.

Consider the possibility that f(x)=tanxf(x) = \tan x and kg(x)=3sinxk g(x) = \sqrt{3} \sin x. Then sec2x4+tan2x+33kcosx4k2(3ksinx)2=sec2xsec2x+3+3/kcosx43sin2x\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} + \frac{\sqrt{3} \cdot \frac{\sqrt{3}}{k} \cos x}{\sqrt{4 - k^2 (\frac{\sqrt{3}}{k} \sin x)^2}} = \frac{\sec^2 x}{\sqrt{\sec^2 x + 3}} + \frac{3/k \cos x}{\sqrt{4 - 3 \sin^2 x}}. If k=3k = \sqrt{3}, then sec2xsec2x+3+3/3cosx43sin2x=sec2xsec2x+3+3cosx43(1cos2x)=sec2xsec2x+3+3cosx1+3cos2x\frac{\sec^2 x}{\sqrt{\sec^2 x + 3}} + \frac{3/\sqrt{3} \cos x}{\sqrt{4 - 3 \sin^2 x}} = \frac{\sec^2 x}{\sqrt{\sec^2 x + 3}} + \frac{\sqrt{3} \cos x}{\sqrt{4 - 3 (1 - \cos^2 x)}} = \frac{\sec^2 x}{\sqrt{\sec^2 x + 3}} + \frac{\sqrt{3} \cos x}{\sqrt{1 + 3 \cos^2 x}}. This is not equal to sec2x+3\sqrt{\sec^2 x + 3}.

Let's try f(x)=tanxf(x) = \tan x, k=3k = \sqrt{3}, and g(x)=sinxg(x) = \sin x.

Let's check the options: (A) value of k is equal to 3\sqrt{3}. This is correct. (B) g(x)=f(x)1+f2(x)g(x) = \frac{f(x)}{\sqrt{1 + f^2(x)}}. g(x)=sinxg(x) = \sin x. f(x)=tanxf(x) = \tan x. f(x)1+f2(x)=tanx1+tan2x=tanxsec2x=tanxsecx=sinx/cosx1/cosx=sinxcosx\frac{f(x)}{\sqrt{1 + f^2(x)}} = \frac{\tan x}{\sqrt{1 + \tan^2 x}} = \frac{\tan x}{\sqrt{\sec^2 x}} = \frac{\tan x}{|\sec x|} = \frac{\sin x / \cos x}{1 / |\cos x|} = \frac{\sin x}{|\cos x|}. This is equal to sinx\sin x if cosx>0\cos x > 0. So this option is correct if we consider the domain where the integral is valid and cosx>0\cos x > 0. Assuming the standard domain for tanx\tan x and secx\sec x where they are defined and positive, this holds.

(C) g2(x)+(1+f2(x))2=1g^2(x) + \left( \sqrt{1 + f^2(x)} \right)^{-2} = 1. g(x)=sinxg(x) = \sin x, f(x)=tanxf(x) = \tan x. g2(x)=sin2xg^2(x) = \sin^2 x. 1+f2(x)=1+tan2x=secx\sqrt{1 + f^2(x)} = \sqrt{1 + \tan^2 x} = |\sec x|. (1+f2(x))2=(secx)2=1sec2x=cos2x\left( \sqrt{1 + f^2(x)} \right)^{-2} = (|\sec x|)^{-2} = \frac{1}{\sec^2 x} = \cos^2 x. g2(x)+(1+f2(x))2=sin2x+cos2x=1g^2(x) + \left( \sqrt{1 + f^2(x)} \right)^{-2} = \sin^2 x + \cos^2 x = 1. This is correct.

(D) g2(x)f2(x)=f2(x)g2(x)g^2(x)f^2(x) = f^2(x) - g^2(x). g(x)=sinxg(x) = \sin x, f(x)=tanxf(x) = \tan x. g2(x)f2(x)=sin2xtan2xg^2(x)f^2(x) = \sin^2 x \tan^2 x. f2(x)g2(x)=tan2xsin2x=sin2xcos2xsin2x=sin2x(1cos2x1)=sin2x(sec2x1)=sin2xtan2xf^2(x) - g^2(x) = \tan^2 x - \sin^2 x = \frac{\sin^2 x}{\cos^2 x} - \sin^2 x = \sin^2 x \left( \frac{1}{\cos^2 x} - 1 \right) = \sin^2 x (\sec^2 x - 1) = \sin^2 x \tan^2 x. So g2(x)f2(x)=f2(x)g2(x)g^2(x)f^2(x) = f^2(x) - g^2(x) is correct.

All options A, B, C, and D are correct based on f(x)=tanxf(x) = \tan x, g(x)=sinxg(x) = \sin x, and k=3k = \sqrt{3}.

The final answer is (A),(B),(C),(D)\boxed{(A), (B), (C), (D)}.