Solveeit Logo

Question

Question: If $\int (\sqrt{\csc x + 1})dx = k \tan^{-1}(f(x)) + c$, then $\frac{1}{k} f(\frac{\pi}{6}) =$...

If (cscx+1)dx=ktan1(f(x))+c\int (\sqrt{\csc x + 1})dx = k \tan^{-1}(f(x)) + c, then 1kf(π6)=\frac{1}{k} f(\frac{\pi}{6}) =

Answer

-1/2

Explanation

Solution

The integral is I=cscx+1dxI = \int \sqrt{\csc x + 1} \, dx.

We can rewrite the integrand as 1sinx+1=1+sinxsinx\sqrt{\frac{1}{\sin x} + 1} = \sqrt{\frac{1 + \sin x}{\sin x}}.

We use the half-angle formulas 1+sinx=(cos(x/2)+sin(x/2))21 + \sin x = (\cos(x/2) + \sin(x/2))^2 and sinx=2sin(x/2)cos(x/2)\sin x = 2 \sin(x/2) \cos(x/2).

Assuming xx is in a domain where sinx>0\sin x > 0, we have 1+sinx=cos(x/2)+sin(x/2)\sqrt{1+\sin x} = |\cos(x/2) + \sin(x/2)|.

If we consider the interval (0,π)(0, \pi), then x/2(0,π/2)x/2 \in (0, \pi/2), so cos(x/2)>0\cos(x/2) > 0 and sin(x/2)>0\sin(x/2) > 0.

Thus, 1+sinx=cos(x/2)+sin(x/2)\sqrt{1+\sin x} = \cos(x/2) + \sin(x/2).

The integrand becomes (cos(x/2)+sin(x/2))22sin(x/2)cos(x/2)=cos(x/2)+sin(x/2)2sin(x/2)cos(x/2)\sqrt{\frac{(\cos(x/2) + \sin(x/2))^2}{2 \sin(x/2) \cos(x/2)}} = \frac{\cos(x/2) + \sin(x/2)}{\sqrt{2 \sin(x/2) \cos(x/2)}}.

We can write this as 12(cos(x/2)sin(x/2)+sin(x/2)cos(x/2))=12(cot(x/2)+tan(x/2))\frac{1}{\sqrt{2}} \left( \sqrt{\frac{\cos(x/2)}{\sin(x/2)}} + \sqrt{\frac{\sin(x/2)}{\cos(x/2)}} \right) = \frac{1}{\sqrt{2}} (\sqrt{\cot(x/2)} + \sqrt{\tan(x/2)}).

Let v=tan(x/2)v = \sqrt{\tan(x/2)}. Then v2=tan(x/2)v^2 = \tan(x/2).

Differentiating with respect to xx: 2vdvdx=12sec2(x/2)=12(1+tan2(x/2))=12(1+v4)2v \frac{dv}{dx} = \frac{1}{2} \sec^2(x/2) = \frac{1}{2} (1 + \tan^2(x/2)) = \frac{1}{2} (1 + v^4).

So dx=4v1+v4dvdx = \frac{4v}{1+v^4} dv.

The integrand is 12(1v+v)\frac{1}{\sqrt{2}} (\frac{1}{v} + v).

The integral becomes I=12(1v+v)4v1+v4dv=421+v21+v4dv=221+v21+v4dvI = \int \frac{1}{\sqrt{2}} (\frac{1}{v} + v) \frac{4v}{1+v^4} dv = \frac{4}{\sqrt{2}} \int \frac{1+v^2}{1+v^4} dv = 2\sqrt{2} \int \frac{1+v^2}{1+v^4} dv.

To evaluate 1+v21+v4dv\int \frac{1+v^2}{1+v^4} dv, divide the numerator and denominator by v2v^2: 1/v2+1v2+1/v2dv\int \frac{1/v^2 + 1}{v^2 + 1/v^2} dv.

Let w=v1/vw = v - 1/v. Then dw=(1+1/v2)dvdw = (1 + 1/v^2) dv.

Also, w2=(v1/v)2=v22+1/v2w^2 = (v - 1/v)^2 = v^2 - 2 + 1/v^2, so v2+1/v2=w2+2v^2 + 1/v^2 = w^2 + 2.

The integral becomes dww2+2=dww2+(2)2=12tan1(w2)+C\int \frac{dw}{w^2 + 2} = \int \frac{dw}{w^2 + (\sqrt{2})^2} = \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{w}{\sqrt{2}}\right) + C.

Substitute back w=v1/v=tan(x/2)1tan(x/2)=tan(x/2)1tan(x/2)w = v - 1/v = \sqrt{\tan(x/2)} - \frac{1}{\sqrt{\tan(x/2)}} = \frac{\tan(x/2) - 1}{\sqrt{\tan(x/2)}}.

So the integral is I=22(12tan1(tan(x/2)1tan(x/2)2))+C=2tan1(tan(x/2)12tan(x/2))+CI = 2\sqrt{2} \left( \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{\frac{\tan(x/2) - 1}{\sqrt{\tan(x/2)}}}{\sqrt{2}}\right) \right) + C = 2 \tan^{-1}\left(\frac{\tan(x/2) - 1}{\sqrt{2 \tan(x/2)}}\right) + C.

This is in the form ktan1(f(x))+ck \tan^{-1}(f(x)) + c, where k=2k=2 and f(x)=tan(x/2)12tan(x/2)f(x) = \frac{\tan(x/2) - 1}{\sqrt{2 \tan(x/2)}}.

We need to find 1kf(π6)\frac{1}{k} f(\frac{\pi}{6}).

1k=12\frac{1}{k} = \frac{1}{2}.

f(π6)=tan((π/6)/2)12tan((π/6)/2)=tan(π/12)12tan(π/12)f(\frac{\pi}{6}) = \frac{\tan((\pi/6)/2) - 1}{\sqrt{2 \tan((\pi/6)/2)}} = \frac{\tan(\pi/12) - 1}{\sqrt{2 \tan(\pi/12)}}.

We calculate tan(π/12)=tan(15)=tan(4530)=tan45tan301+tan45tan30=11/31+1/3=313+1\tan(\pi/12) = \tan(15^\circ) = \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} = \frac{1 - 1/\sqrt{3}}{1 + 1/\sqrt{3}} = \frac{\sqrt{3}-1}{\sqrt{3}+1}.

tan(π/12)=(31)2(3+1)(31)=323+131=4232=23\tan(\pi/12) = \frac{(\sqrt{3}-1)^2}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{3 - 2\sqrt{3} + 1}{3 - 1} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}.

Substitute tan(π/12)=23\tan(\pi/12) = 2 - \sqrt{3} into f(π6)f(\frac{\pi}{6}):

f(π6)=(23)12(23)=13423f(\frac{\pi}{6}) = \frac{(2 - \sqrt{3}) - 1}{\sqrt{2 (2 - \sqrt{3})}} = \frac{1 - \sqrt{3}}{\sqrt{4 - 2\sqrt{3}}}.

We recognize the denominator 423=(3)2231+12=(31)2=31\sqrt{4 - 2\sqrt{3}} = \sqrt{(\sqrt{3})^2 - 2\sqrt{3} \cdot 1 + 1^2} = \sqrt{(\sqrt{3} - 1)^2} = |\sqrt{3} - 1|.

Since 3>1\sqrt{3} > 1, 31=31|\sqrt{3} - 1| = \sqrt{3} - 1.

So, f(π6)=1331=1f(\frac{\pi}{6}) = \frac{1 - \sqrt{3}}{\sqrt{3} - 1} = -1.

Finally, we calculate 1kf(π6)=12×(1)=12\frac{1}{k} f(\frac{\pi}{6}) = \frac{1}{2} \times (-1) = -\frac{1}{2}.