Question
Question: If $\int (\sqrt{\csc x + 1})dx = k \tan^{-1}(f(x)) + c$, then $\frac{1}{k} f(\frac{\pi}{6}) =$...
If ∫(cscx+1)dx=ktan−1(f(x))+c, then k1f(6π)=

-1/2
Solution
The integral is I=∫cscx+1dx.
We can rewrite the integrand as sinx1+1=sinx1+sinx.
We use the half-angle formulas 1+sinx=(cos(x/2)+sin(x/2))2 and sinx=2sin(x/2)cos(x/2).
Assuming x is in a domain where sinx>0, we have 1+sinx=∣cos(x/2)+sin(x/2)∣.
If we consider the interval (0,π), then x/2∈(0,π/2), so cos(x/2)>0 and sin(x/2)>0.
Thus, 1+sinx=cos(x/2)+sin(x/2).
The integrand becomes 2sin(x/2)cos(x/2)(cos(x/2)+sin(x/2))2=2sin(x/2)cos(x/2)cos(x/2)+sin(x/2).
We can write this as 21(sin(x/2)cos(x/2)+cos(x/2)sin(x/2))=21(cot(x/2)+tan(x/2)).
Let v=tan(x/2). Then v2=tan(x/2).
Differentiating with respect to x: 2vdxdv=21sec2(x/2)=21(1+tan2(x/2))=21(1+v4).
So dx=1+v44vdv.
The integrand is 21(v1+v).
The integral becomes I=∫21(v1+v)1+v44vdv=24∫1+v41+v2dv=22∫1+v41+v2dv.
To evaluate ∫1+v41+v2dv, divide the numerator and denominator by v2: ∫v2+1/v21/v2+1dv.
Let w=v−1/v. Then dw=(1+1/v2)dv.
Also, w2=(v−1/v)2=v2−2+1/v2, so v2+1/v2=w2+2.
The integral becomes ∫w2+2dw=∫w2+(2)2dw=21tan−1(2w)+C.
Substitute back w=v−1/v=tan(x/2)−tan(x/2)1=tan(x/2)tan(x/2)−1.
So the integral is I=22(21tan−1(2tan(x/2)tan(x/2)−1))+C=2tan−1(2tan(x/2)tan(x/2)−1)+C.
This is in the form ktan−1(f(x))+c, where k=2 and f(x)=2tan(x/2)tan(x/2)−1.
We need to find k1f(6π).
k1=21.
f(6π)=2tan((π/6)/2)tan((π/6)/2)−1=2tan(π/12)tan(π/12)−1.
We calculate tan(π/12)=tan(15∘)=tan(45∘−30∘)=1+tan45∘tan30∘tan45∘−tan30∘=1+1/31−1/3=3+13−1.
tan(π/12)=(3+1)(3−1)(3−1)2=3−13−23+1=24−23=2−3.
Substitute tan(π/12)=2−3 into f(6π):
f(6π)=2(2−3)(2−3)−1=4−231−3.
We recognize the denominator 4−23=(3)2−23⋅1+12=(3−1)2=∣3−1∣.
Since 3>1, ∣3−1∣=3−1.
So, f(6π)=3−11−3=−1.
Finally, we calculate k1f(6π)=21×(−1)=−21.