Question
Mathematics Question on Integrals of Some Particular Functions
If ∫sec2x−1dx=αlogecos2x+β+cos2x(1+cosβ1x)+ constant, then β−α is equal to_______
Answer
∫sec2x−1dx=∫cos2x1−cos2xdx
=2∫2cos2x−1sinxdx
put cosx=t⇒−sinxdx=dt
=−2∫2t2−1dt
=−ln∣2cosx+cos2x∣+c
=−21ln∣∣2cos2x+cos2x+2cos2x⋅2cosx∣∣+c
=−21ln∣∣cos2x+21+cos2x⋅1+cos2x∣∣+c
∵β=21,α=−21
⇒β−α=1
So, the correct answer is 1.