Solveeit Logo

Question

Mathematics Question on Derivatives

If sinx1t2f(t)dt=1sinx,x(0,π/2),thenf(13)\int_{sin x}^1 \, t^2 f(t) dt =1-sin x, \forall x \in (0,\pi/2), \, then \, f\bigg(\frac{1}{\sqrt 3}\bigg) is

A

3

B

3\sqrt 3

C

44564

D

None of these

Answer

3

Explanation

Solution

Since sinx1t2f(t)dt=1sinx\int_{sin x}^1 \, t^2 f(t) dt =1-sin x thus to find f(x)
On differentiating both sides using Newton Leibnitz
formula
i.e. \hspace20mm \frac{d}{dx} \int_{sin x}^1 t^2 f(t) dt =\frac{d}{dx}(1-sin x)
12f(1).(0)(sin2x).f(sinx).cosx=cosx\Rightarrow \, \, \, \\{ 1^2f(-1)\\}.(0)-(sin^2x).f(sin x).cos x=-cos x
\Rightarrow \, \, \, \, \, \hspace20mm f(sin x)=\frac{1}{sin^2 x}
For f (13)\bigg(\frac{1}{\sqrt 3}\bigg) is obtained when sin x = 131\sqrt 3
i.e \hspace20mm f\bigg(\frac{1}{\sqrt 3}\bigg) =(\sqrt 3)^2 =3