Question
Mathematics Question on Derivatives
If ∫sinx1t2f(t)dt=1−sinx,∀x∈(0,π/2),thenf(31) is
A
3
B
3
C
44564
D
None of these
Answer
3
Explanation
Solution
Since ∫sinx1t2f(t)dt=1−sinx thus to find f(x)
On differentiating both sides using Newton Leibnitz
formula
i.e. \hspace20mm \frac{d}{dx} \int_{sin x}^1 t^2 f(t) dt =\frac{d}{dx}(1-sin x)
⇒12f(−1).(0)−(sin2x).f(sinx).cosx=−cosx
\Rightarrow \, \, \, \, \, \hspace20mm f(sin x)=\frac{1}{sin^2 x}
For f (31) is obtained when sin x = 13
i.e \hspace20mm f\bigg(\frac{1}{\sqrt 3}\bigg) =(\sqrt 3)^2 =3