Question
Question: If $\int (\sin 2x - \cos 2x) dx = \frac{1}{\sqrt{2}} \sin (2x - a) + C$, then...
If ∫(sin2x−cos2x)dx=21sin(2x−a)+C, then

A
a=45π,CER
B
a=−45π,CER
C
a=4π,CER
D
a=2π,CER
Answer
a = -\frac{5\pi}{4}, CER
Explanation
Solution
Here's the step-by-step explanation:
-
Integrate the left-hand side (LHS):
∫(sin2x−cos2x)dx=−21cos2x−21sin2x+C=−21(cos2x+sin2x)+C
-
Compare with the right-hand side (RHS):
−21(cos2x+sin2x)=21sin(2x−a)
-
Manipulate the equation:
Multiply both sides by 2:
−22(cos2x+sin2x)=sin(2x−a)
−21cos2x−21sin2x=sin(2x−a)
Using the trigonometric identity sin(A−B)=sinAcosB−cosAsinB:
sin(2x−a)=sin2xcosa−cos2xsina
Comparing coefficients:
cosa=−21 and sina=21
-
Solve for a:
The angle 'a' is in the second quadrant. The principal value is a=43π. The general solution is a=43π+2nπ, where n is an integer.
-
Check the options:
For n=−1, a=43π−2π=−45π.