Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

If 1xdttt21=π6\int\limits^x_1 \frac{dt}{|t\, \sqrt{t^2 - 1}} = \frac{\pi}{6} , then xx can be equal to

A

23\frac{ 2}{\sqrt{3}}

B

3\sqrt{3}

C

22

D

None of these

Answer

23\frac{ 2}{\sqrt{3}}

Explanation

Solution

1xdttt21=π6\int\limits_{1}^{x} \frac{d t}{|t| \sqrt{t^{2}-1}}=\frac{\pi}{6}
[sec1t]1x=π6\Rightarrow \left[\sec ^{-1} t\right]_{1}^{x}=\frac{\pi}{6}
sec1xsec11=π6\Rightarrow \sec ^{-1} x-\sec ^{-1} 1=\frac{\pi}{6}
sec1x0=π6\Rightarrow \sec ^{-1} x- 0=\frac{\pi}{6}
x=secπ6\Rightarrow x=\sec \frac{\pi}{6}
x=23\Rightarrow x=\frac{2}{\sqrt{3}}