Solveeit Logo

Question

Mathematics Question on Definite Integral

If 0Kdx2+18x2=π24\int\limits^{K}_0 \frac{dx}{2 + 18 x^2} = \frac{\pi}{24}, then the value of K is

A

3

B

4

C

13\frac{1}{3}

D

14\frac{1}{4}

Answer

13\frac{1}{3}

Explanation

Solution

We have, 0kdx2+18x2=π24 \int\limits_{0}^{k} \frac{d x}{2+18 x^{2}}=\frac{\pi}{24}
1180kdx(13)2+x2=π24\Rightarrow \frac{1}{18} \int\limits_{0}^{k} \frac{d x}{\left(\frac{1}{3}\right)^{2}+x^{2}}=\frac{\pi}{24}
118×113[tan13x]0k=π24\Rightarrow \frac{1}{18} \times \frac{1}{\frac{1}{3}}\left[\tan ^{-1} 3 x\right]_{0}^{k}=\frac{\pi}{24}
[tan13ktan10]=π4\Rightarrow \left[\tan ^{-1} 3 k-\tan ^{-1} 0\right]=\frac{\pi}{4}
tan13k=π4\Rightarrow \tan ^{-1} 3 k=\frac{\pi}{4}
3k=tanπ4\Rightarrow 3 k=\tan \frac{\pi}{4}
3k=1\Rightarrow 3 k=1
k=13\Rightarrow k=\frac{1}{3}