Solveeit Logo

Question

Mathematics Question on integral

If 0eaxdx=1a,\int\limits^{\infty}_{{0}}e^{-ax}dx=\frac{1}{a}, then 0xneaxdx\int\limits^{\infty}_{{0}}x^n\,e^{-ax}dx is

A

(1)nn!an+1\frac{\left(-1\right)^{n}n!}{a^{n+1}}

B

(1)n(n1)!an\frac{\left(-1\right)^{n}\left(n-1\right)!}{a^{n}}

C

n!an+1\frac{n!}{a^{n+1}}

D

None of these

Answer

n!an+1\frac{n!}{a^{n+1}}

Explanation

Solution

Let I=0xneax=I=\int\limits^{\infty}_{{0}}x^n\,e^{-ax}= [xneaxa]0\left[x^{n}\cdot \frac{e^{-ax}}{-a}\right]^{^{\infty}}_{_{_0}}- 0nxn1eaxadx\int\limits^{\infty}_{{0}}nx^{n-1}\cdot \frac{e^{-ax}}{-a}dx =1a=-\frac{1}{a} limx\displaystyle \lim_{x \to \infty} =xneax+naIn1=\frac{x^{n}}{e^{ax}}+\frac{n}{a}I_{n-1} In=naIn1[limxxneax=0]\therefore I_{n}=\frac{n}{a}I_{n-1}\,\left[\because \displaystyle \lim_{x \to \infty} \frac{x^{n}}{e^{ax}}=0\right] =nan1aIn2=n(n1)(n2)a3In3=\frac{n}{a}\cdot \frac{n-1}{a}I_{n-2}=\frac{n\left(n-1\right)\left(n-2\right)}{a^{3}}I_{n-3} .................................................................................. .............................................................................. =n!an=\frac{n!}{a^{n}} 0\int\limits^{\infty}_{{0}} eaxdx=n!an+1e^{-ax}dx=\frac{n!}{a^{n+1}}