Solveeit Logo

Question

Mathematics Question on integral

If cos8x+1tan2xcot2xdx=acos8x+c,\int\limits \frac{\cos \, 8x + 1}{ \tan \, 2x - \cot \, 2x} dx = a \, \cos \, 8x + c , then aa =

A

116 - \frac{1}{16}

B

18 \frac{1}{8}

C

116 \frac{1}{16}

D

18 - \frac{1}{8}

Answer

116 \frac{1}{16}

Explanation

Solution

L.H.S = cos8x+1tan2xcot2xdx\int\limits \frac{\cos \, 8x + 1}{ \tan \, 2x - \cot \, 2x} dx
2cos24x(sin22xcos22xsin2xcos2x)dx\int\frac{2 \cos^{2} 4x}{\left(\frac{\sin^{2} 2x -\cos^{2}2x}{\sin 2x\cos 2x}\right)} dx
=cos24x(2sin2xcos2x)(cos22xsin22x)dx= - \int\frac{\cos^{2} 4x \left(2 \sin 2x \cos 2x\right)}{\left(\cos^{2} 2x - \sin^{2 } 2x \right) }dx
=cos24x×sin4xcos4xdx= - \int\frac{\cos^{2} 4x \times \sin \, 4x}{\cos\, 4x}dx
=122sin4xcos4xdx= - \frac{1}{2} \int 2 \, \sin \, 4x \, cos \, 4x \, dx
=12sin8xdx=12×cos8x8+c= - \frac{1}{2} \int \sin \, 8x \, dx = \frac{1}{2} \times \frac{\cos \, 8x}{8} + c
Now, 12cos8x8+c=acos8x+c \frac{1}{2} \frac{\cos \, 8x}{8} +c = a \, cos \, 8x + c
a=116\therefore \:\: a = \frac{1}{16}