Question
Mathematics Question on integral
If ∫tan2x−cot2xcos8x+1dx=acos8x+c, then a =
A
−161
B
81
C
161
D
−81
Answer
161
Explanation
Solution
L.H.S = ∫tan2x−cot2xcos8x+1dx
∫(sin2xcos2xsin22x−cos22x)2cos24xdx
=−∫(cos22x−sin22x)cos24x(2sin2xcos2x)dx
=−∫cos4xcos24x×sin4xdx
=−21∫2sin4xcos4xdx
=−21∫sin8xdx=21×8cos8x+c
Now, 218cos8x+c=acos8x+c
∴a=161