Solveeit Logo

Question

Question: If \(\int\limits_{a}^{b}{{{x}^{3}}dx}=0\) and \(\int\limits_{a}^{b}{{{x}^{2}}dx}=\dfrac{2}{3}\), t...

If abx3dx=0\int\limits_{a}^{b}{{{x}^{3}}dx}=0 and abx2dx=23\int\limits_{a}^{b}{{{x}^{2}}dx}=\dfrac{2}{3},
then what are the values of a and b respectively?
(a) 1,1-1,1
(b) 1,11,1
(c) 0,00,0
(d) 2,22,-2

Explanation

Solution

Hint: We are given two basic integrals which, after solving, will give us two equations having
variables a'a' and b'b'. Solving these two equations by substitution method, we can find out the
value of a'a' and b'b'.

Before proceeding with the question, we will first discuss the formula which is required to
solve this question.
We have a formula in integration which can be used to integrate polynomial,

abxndx=[xn+1n+1]ab abxndx=1n+1(bn+1an+1)...........(1) \begin{aligned} & \int\limits_{a}^{b}{{{x}^{n}}dx}=\left[ \dfrac{{{x}^{n+1}}}{n+1} \right]_{a}^{b} \\\ & \Rightarrow \int\limits_{a}^{b}{{{x}^{n}}dx}=\dfrac{1}{n+1}\left( {{b}^{n+1}}-{{a}^{n+1}} \right)...........\left( 1 \right) \\\ \end{aligned}

In the question, it is given abx3dx=0...........(2)\int\limits_{a}^{b}{{{x}^{3}}dx}=0...........\left( 2 \right).
Substituting n=3n=3 in equation (1)\left( 1 \right), we get,
abx3dx=[x3+13+1]ab abx3dx=[x44]ab abx3dx=14(b4a4)..........(3) \begin{aligned} & \int\limits_{a}^{b}{{{x}^{3}}dx}=\left[ \dfrac{{{x}^{3+1}}}{3+1} \right]_{a}^{b} \\\ & \Rightarrow \int\limits_{a}^{b}{{{x}^{3}}dx}=\left[ \dfrac{{{x}^{4}}}{4} \right]_{a}^{b} \\\ & \Rightarrow \int\limits_{a}^{b}{{{x}^{3}}dx}=\dfrac{1}{4}\left( {{b}^{4}}-{{a}^{4}} \right)..........\left( 3 \right) \\\ \end{aligned}

Substituting abx3dx\int\limits_{a}^{b}{{{x}^{3}}dx} from equation (3)\left( 3 \right) in equation (2)\left( 2 \right), we get,
14(b4a4)=0 b4a4=0 a4=b4 \begin{aligned} & \dfrac{1}{4}\left( {{b}^{4}}-{{a}^{4}} \right)=0 \\\ & \Rightarrow {{b}^{4}}-{{a}^{4}}=0 \\\ & \Rightarrow {{a}^{4}}={{b}^{4}} \\\ \end{aligned}
a=+b\Rightarrow a=+b or a=b.........(4)a=-b.........\left( 4 \right)
Also, it is given in the question abx2dx=23...........(5)\int\limits_{a}^{b}{{{x}^{2}}dx}=\dfrac{2}{3}...........\left( 5 \right)
Substituting n=2n=2 in equation (1)\left( 1 \right), we get,
abx2dx=[x2+12+1]ab abx2dx=[x33]ab abx2dx=13(b3a3)..........(6) \begin{aligned} & \int\limits_{a}^{b}{{{x}^{2}}dx}=\left[ \dfrac{{{x}^{2+1}}}{2+1} \right]_{a}^{b} \\\ & \Rightarrow \int\limits_{a}^{b}{{{x}^{2}}dx}=\left[ \dfrac{{{x}^{3}}}{3} \right]_{a}^{b} \\\ & \Rightarrow \int\limits_{a}^{b}{{{x}^{2}}dx}=\dfrac{1}{3}\left( {{b}^{3}}-{{a}^{3}} \right)..........\left( 6 \right) \\\ \end{aligned}
Substituting abx2dx\int\limits_{a}^{b}{{{x}^{2}}dx} from equation (6)\left( 6 \right) in equation (5)\left( 5 \right), we get,
13(b3a3)=23\dfrac{1}{3}\left( {{b}^{3}}-{{a}^{3}} \right)=\dfrac{2}{3}
Cancelling 33 on both the sides of the equality in the above equation, we get,
b3a3=2..........(7){{b}^{3}}-{{a}^{3}}=2..........\left( 7 \right)
Substituting aa from equation (4)\left( 4 \right) in equation (7)\left( 7 \right), we get,
b3(+b)3=2{{b}^{3}}-{{\left( +b \right)}^{3}}=2 or b3(b)3=2{{b}^{3}}-{{\left( -b \right)}^{3}}=2
b3b3=2\Rightarrow {{b}^{3}}-{{b}^{3}}=2 or b3+b3=2{{b}^{3}}+{{b}^{3}}=2
0=2........(8)0=2........\left( 8 \right) or 2b3=2.........(9)2{{b}^{3}}=2.........\left( 9 \right)
We can conclude that equation (8)\left( 8 \right) is invalid because 00 can never be equal to
22.Therefore, we will find our solution from equation (9)\left( 9 \right) only.
2b3=2 b3=1 b=1..........(10) \begin{aligned} & 2{{b}^{3}}=2 \\\ & \Rightarrow {{b}^{3}}=1 \\\ & \Rightarrow b=1..........\left( 10 \right) \\\ \end{aligned}

We can find aa by substituting the equation (10)\left( 10 \right) in equation (4)\left( 4 \right). Since we
had ignored equation (8)\left( 8 \right), we will not substitute equation (10)\left( 10 \right) in a=+ba=+b.
We will substitute the equation (10)\left( 10 \right) only in a=ba=-b.
Substituting b=1b=1 from equation (10)\left( 10 \right) in a=ba=-b, we get,
a=1..........(11)a=-1..........\left( 11 \right)
Hence, from equation (10)\left( 10 \right) and equation (11)\left( 11 \right), we obtain a=1,b=1a=-1,b=1.

Therefore the correct answer is option (a).

Note: Sometimes in such types of questions, we may apply the incorrect formula of the integration that we discussed in equation (1)\left( 1 \right). We sometimes apply it as
abxndx=1n1(bn1an1)\int\limits_{a}^{b}{{{x}^{n}}dx}=\dfrac{1}{n-1}\left( {{b}^{n-1}}-{{a}^{n-1}} \right) instead of
abxndx=1n+1(bn+1an+1)\int\limits_{a}^{b}{{{x}^{n}}dx}=\dfrac{1}{n+1}\left( {{b}^{n+1}}-{{a}^{n+1}} \right) because we convert nn to n1n-1 in differentiation.