Solveeit Logo

Question

Mathematics Question on integral

if abxnxn+(16x)ndx=6\int\limits_{a}^{b} \frac{x^{n}}{x^{n} + \left(16 - x\right)^{n}} dx = 6, then

A

a=4,b=12,nRa = 4, b = 12, n\in R

B

a=2,b=14,nRa = 2, b = 14, n\in R

C

a=4,b=20,nRa = -4, b = 20, n\in R

D

a=2,b=8,nRa = 2, b = 8, n\in R

Answer

a=2,b=14,nRa = 2, b = 14, n\in R

Explanation

Solution

abxnxn+(16x)ndx=6....(i)\int\limits_{a}^{b} \frac{x^{n}}{x^{n} + \left(16 - x\right)^{n}} dx = 6\quad....\left(i\right) Let a+b=16a + b = 16, then by property ab(16x)n(16x)n+xndx=6....(ii)\int\limits_{a}^{b} \frac{\left(16-x\right)^{n}}{\left(16-x\right)^{n }+ x^{n}} dx = 6\quad....\left(ii\right) Adding(i) \left(i\right)\,\, and (ii)\,\left(ii\right), we get ab1dx=12\int\limits_{a}^{b} 1\cdot dx = 12 ba=12\Rightarrow b - a = 12 Solving a+b=16a + b = 16 and ba=12b- a = 12, we get a=2,b=14a = 2, b = 14 and nRn\in R