Solveeit Logo

Question

Question: If \(\int {\left( {u\dfrac{{dv}}{{dx}}} \right)} \;dx = uv - \int {wdx} ,\) then W= 1)\(\dfrac{{d...

If (udvdx)  dx=uvwdx,\int {\left( {u\dfrac{{dv}}{{dx}}} \right)} \;dx = uv - \int {wdx} , then W=
1)dudxdvdx\dfrac{{du}}{{dx}} \cdot \dfrac{{dv}}{{dx}}
2)v.dudxv.\dfrac{{du}}{{dx}}
3)ddx(uv)\dfrac{d}{{dx}}\left( {uv} \right)
4)ddx(uv)\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right)

Explanation

Solution

Use the integral function assuming that u as one function and dvdx\dfrac{{dv}}{{dx}} as another function try to match and select for integral of ab  dx\int {ab\;dx}

Complete step-by-step answer:
Let’s begin with what type of Integral function is given. The function given is (udvdx)dx\int {\left( {u\dfrac{{dv}}{{dx}}} \right)dx}
As we can see that form is 2 functions or variables which is u and second is dv / dx.
As we match we integral property we can equals this in the form of
a.b  dx  =a  dx    (dadxab  dx)dx\int {a.b\;dx\; = a} \;\int {dx\; - \;\int {\left( {\dfrac{{da}}{{dx}}\smallint ab\;dx} \right)} } dx
Let’s assume aa as u and b as dvdx\dfrac{{dv}}{{dx}}
By putting the values we get.
(udvdx)  dx=udvdx.dx(dudxdvdxdx)  dx\int {\left( {u\dfrac{{dv}}{{dx}}} \right)} \;dx = u\int {\dfrac{{dv}}{{dx}}.dx - \int {\left( {\dfrac{{du}}{{dx}}\smallint \dfrac{{dv}}{{dx}}dx} \right)} } \;dx
(udvdu)dx=uv(dvdxv)dx\int {\left( {u\dfrac{{dv}}{{du}}} \right)} dx = uv - \int {\left( {\dfrac{{dv}}{{dx}} \cdot v} \right)} dx
So if we compare the equation with the given one we get.
w=dudxvw = \dfrac{{du}}{{dx}} \cdot v

So, option 2 is the correct option

Note: The basic properties of Integration and differentiation is the basic source to solve this type of question matching the correct part from the option.