Solveeit Logo

Question

Question: If $\int \frac{(\sqrt{1+x^2}+x)^{10}}{(\sqrt{1+x^2}-x)^9} dx = \frac{1}{m}((\sqrt{1+x^2}+x)^n(n\sqrt...

If (1+x2+x)10(1+x2x)9dx=1m((1+x2+x)n(n1+x2x))+C\int \frac{(\sqrt{1+x^2}+x)^{10}}{(\sqrt{1+x^2}-x)^9} dx = \frac{1}{m}((\sqrt{1+x^2}+x)^n(n\sqrt{1+x^2}-x)) + C where C is the constant of integration and m,nNm,n \in N, then m+nm+n is equal to ______.

Answer

379

Explanation

Solution

Here's how to solve this integral problem:

  1. Simplify the integrand: Let t=1+x2+xt = \sqrt{1+x^2}+x. Use the property (1+x2x)(1+x2+x)=1(\sqrt{1+x^2}-x)(\sqrt{1+x^2}+x)=1 to express the denominator in terms of tt. The integral simplifies.

  2. Express dxdx in terms of tt and dtdt: Differentiate tt with respect to xx to find dtdx\frac{dt}{dx}. Then, express 1+x2\sqrt{1+x^2} in terms of tt by adding tt and 1/t1/t. Substitute this into the expression for dxdx.

  3. Perform the integration: Substitute dxdx to integrate with respect to tt.

  4. Match with the given form (Alternative and more robust approach): Instead of trying to manipulate the integrated expression to match the given form, differentiate the given form of the result with respect to xx.

    • Let F(x)=1m((1+x2+x)n(n1+x2x))F(x) = \frac{1}{m}((\sqrt{1+x^2}+x)^n(n\sqrt{1+x^2}-x)).

    • Convert F(x)F(x) entirely in terms of t=1+x2+xt = \sqrt{1+x^2}+x and its reciprocal 1/t1/t.

    • Differentiate F(x)F(x) using the chain rule: dFdx=dFdtdtdx\frac{dF}{dx} = \frac{dF}{dt} \cdot \frac{dt}{dx}.

    • Calculate dFdt\frac{dF}{dt} and dtdx\frac{dt}{dx}.

  5. Compare and solve for m and n: Equate the derived dFdx\frac{dF}{dx} with the original integrand. This directly gives nn and mm.

  6. Calculate m+n:

Following these steps, we find that m+n=379m+n = 379.