Solveeit Logo

Question

Question: If $\int \frac{sin^4 x cos^2 x + cos^4 x sin^2 x}{(sin^5 x + cos^3 x sin^2 x + sin^3 x cos^2 x + cos...

If sin4xcos2x+cos4xsin2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dx=1α(1+tanβx)+C\int \frac{sin^4 x cos^2 x + cos^4 x sin^2 x}{(sin^5 x + cos^3 x sin^2 x + sin^3 x cos^2 x + cos^5 x)^2} dx = \frac{-1}{\alpha (1+tan^{\beta} x)} + C, where α,βR\alpha, \beta \in R then α+β\alpha + \beta is equal to _______.

Answer

6

Explanation

Solution

The problem asks us to evaluate a definite integral and then determine the values of α\alpha and β\beta by comparing our result with a given form. Finally, we need to find the sum α+β\alpha + \beta.

Let the given integral be II. I=sin4xcos2x+cos4xsin2x(sin5x+cos3xsin2x+sin3xcos2x+cos5x)2dxI = \int \frac{\sin^4 x \cos^2 x + \cos^4 x \sin^2 x}{(\sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x)^2} dx

Step 1: Simplify the numerator. The numerator (N) is sin4xcos2x+cos4xsin2x\sin^4 x \cos^2 x + \cos^4 x \sin^2 x. We can factor out sin2xcos2x\sin^2 x \cos^2 x: N=sin2xcos2x(sin2x+cos2x)N = \sin^2 x \cos^2 x (\sin^2 x + \cos^2 x) Since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1, the numerator simplifies to: N=sin2xcos2xN = \sin^2 x \cos^2 x

Step 2: Simplify the term inside the parenthesis in the denominator. Let T=sin5x+cos3xsin2x+sin3xcos2x+cos5xT = \sin^5 x + \cos^3 x \sin^2 x + \sin^3 x \cos^2 x + \cos^5 x. Group terms: T=(sin5x+sin3xcos2x)+(cos3xsin2x+cos5x)T = (\sin^5 x + \sin^3 x \cos^2 x) + (\cos^3 x \sin^2 x + \cos^5 x) Factor out common terms from each group: T=sin3x(sin2x+cos2x)+cos3x(sin2x+cos2x)T = \sin^3 x (\sin^2 x + \cos^2 x) + \cos^3 x (\sin^2 x + \cos^2 x) Since sin2x+cos2x=1\sin^2 x + \cos^2 x = 1: T=sin3x(1)+cos3x(1)T = \sin^3 x (1) + \cos^3 x (1) T=sin3x+cos3xT = \sin^3 x + \cos^3 x So, the denominator (D) is (sin3x+cos3x)2(\sin^3 x + \cos^3 x)^2.

Step 3: Rewrite the integral with the simplified numerator and denominator. The integral becomes: I=sin2xcos2x(sin3x+cos3x)2dxI = \int \frac{\sin^2 x \cos^2 x}{(\sin^3 x + \cos^3 x)^2} dx

Step 4: Transform the integrand for substitution. To make the integral solvable, we can divide both the numerator and the denominator by a suitable power of cosx\cos x. Dividing by cos6x\cos^6 x (which is (cos3x)2(\cos^3 x)^2) will convert the expression into terms of tanx\tan x and secx\sec x.

Numerator transformation: sin2xcos2xcos6x=sin2xcos4x=sin2xcos2x1cos2x=tan2xsec2x\frac{\sin^2 x \cos^2 x}{\cos^6 x} = \frac{\sin^2 x}{\cos^4 x} = \frac{\sin^2 x}{\cos^2 x} \cdot \frac{1}{\cos^2 x} = \tan^2 x \sec^2 x

Denominator transformation: (sin3x+cos3x)2cos6x=(sin3x+cos3xcos3x)2=(sin3xcos3x+cos3xcos3x)2=(tan3x+1)2\frac{(\sin^3 x + \cos^3 x)^2}{\cos^6 x} = \left(\frac{\sin^3 x + \cos^3 x}{\cos^3 x}\right)^2 = \left(\frac{\sin^3 x}{\cos^3 x} + \frac{\cos^3 x}{\cos^3 x}\right)^2 = (\tan^3 x + 1)^2

Now, the integral is: I=tan2xsec2x(tan3x+1)2dxI = \int \frac{\tan^2 x \sec^2 x}{(\tan^3 x + 1)^2} dx

Step 5: Use substitution to evaluate the integral. Let u=tan3x+1u = \tan^3 x + 1. Differentiate uu with respect to xx: dudx=ddx(tan3x+1)=3tan2xddx(tanx)=3tan2xsec2x\frac{du}{dx} = \frac{d}{dx}(\tan^3 x + 1) = 3 \tan^2 x \cdot \frac{d}{dx}(\tan x) = 3 \tan^2 x \sec^2 x From this, we get du=3tan2xsec2xdxdu = 3 \tan^2 x \sec^2 x dx, or tan2xsec2xdx=13du\tan^2 x \sec^2 x dx = \frac{1}{3} du.

Substitute uu and dudu into the integral: I=1u213duI = \int \frac{1}{u^2} \cdot \frac{1}{3} du I=13u2duI = \frac{1}{3} \int u^{-2} du

Step 6: Integrate u2u^{-2}. I=13(u2+12+1)+CI = \frac{1}{3} \left( \frac{u^{-2+1}}{-2+1} \right) + C I=13(u11)+CI = \frac{1}{3} \left( \frac{u^{-1}}{-1} \right) + C I=13u+CI = -\frac{1}{3u} + C

Step 7: Substitute back u=tan3x+1u = \tan^3 x + 1. I=13(tan3x+1)+CI = -\frac{1}{3(\tan^3 x + 1)} + C This can be written as: I=13(1+tan3x)+CI = -\frac{1}{3(1 + \tan^3 x)} + C

Step 8: Compare the result with the given form. The given form is 1α(1+tanβx)+C\frac{-1}{\alpha (1+\tan^{\beta} x)} + C. By comparing our result I=13(1+tan3x)+CI = -\frac{1}{3(1 + \tan^3 x)} + C with the given form, we can identify the values of α\alpha and β\beta: α=3\alpha = 3 β=3\beta = 3

Step 9: Calculate α+β\alpha + \beta. α+β=3+3=6\alpha + \beta = 3 + 3 = 6

The final answer is 6\boxed{6}.

The final answer is 6\boxed{6}.

Subject, Chapter, and Topic:

Subject: Mathematics Chapter: Integrals Topic: Integration by Substitution

Difficulty Level:

Medium

Question Type:

Integer