Solveeit Logo

Question

Question: If $\int \frac{\sec^2xdx}{(\tan^{101}x+\tanx)}=g(x)+c$, where $g(\frac{\pi}{2})=\frac{ln(\frac{1}{2}...

If sec2xdx(tan101x+\tanx)=g(x)+c\int \frac{\sec^2xdx}{(\tan^{101}x+\tanx)}=g(x)+c, where g(π2)=ln(12)100g(\frac{\pi}{2})=\frac{ln(\frac{1}{2})}{100}, then limxπ2g(x)lim_{x\to \frac{\pi}{2}}g(x) is less than

A

0

B

1

C

-1

D

2

Answer

The limit is ln(2)100\frac{-\ln(2)}{100}. Options A, B, and D are all correct as the limit is less than 0, 1, and 2 respectively. Option A provides the tightest upper bound.

Explanation

Solution

Let u=tanxu = \tan x, so du=sec2xdxdu = \sec^2 x dx. The integral becomes duu(u100+u)=duu2(u100+1)\int \frac{du}{u(u^{100}+u)} = \int \frac{du}{u^2(u^{100}+1)}. To simplify, we can rewrite the integrand as 1u2(u100+1)=1u102(1+u100)\frac{1}{u^2(u^{100}+1)} = \frac{1}{u^{102}(1+u^{-100})}. Alternatively, we can write 1u(u100+u)=1u101(1+u100)\frac{1}{u(u^{100}+u)} = \frac{1}{u^{101}(1+u^{-100})}. Let's use the substitution v=u100v = u^{100}. Then dv=100u99dudv = 100 u^{99} du. The integral is u99duu100(u100+1)=1v(v+1)dv100\int \frac{u^{99} du}{u^{100}(u^{100}+1)} = \int \frac{1}{v(v+1)} \frac{dv}{100}. Using partial fractions, 1v(v+1)=1v1v+1\frac{1}{v(v+1)} = \frac{1}{v} - \frac{1}{v+1}. So, the integral is 1100(1v1v+1)dv=1100(lnvlnv+1)+c=1100lnvv+1+c\frac{1}{100} \int (\frac{1}{v} - \frac{1}{v+1}) dv = \frac{1}{100} (\ln|v| - \ln|v+1|) + c = \frac{1}{100} \ln|\frac{v}{v+1}| + c. Substituting back v=tan100xv = \tan^{100}x, we get g(x)=1100lntan100xtan100x+1+cg(x) = \frac{1}{100} \ln|\frac{\tan^{100}x}{\tan^{100}x+1}| + c.

Now, we find the limit as xπ2x \to \frac{\pi}{2}: As xπ2x \to \frac{\pi}{2}, tanx\tan x \to \infty. Let u=tanxu = \tan x. limxπ2g(x)=limu(1100lnu100u100+1+c)\lim_{x\to \frac{\pi}{2}} g(x) = \lim_{u\to \infty} \left(\frac{1}{100} \ln\left|\frac{u^{100}}{u^{100}+1}\right| + c\right) =1100ln(limuu100u100+1)+c= \frac{1}{100} \ln\left(\lim_{u\to \infty} \frac{u^{100}}{u^{100}+1}\right) + c =1100ln(limu11+1u100)+c= \frac{1}{100} \ln\left(\lim_{u\to \infty} \frac{1}{1+\frac{1}{u^{100}}}\right) + c =1100ln(1)+c=0+c=c= \frac{1}{100} \ln(1) + c = 0 + c = c.

We are given g(π2)=ln(12)100g(\frac{\pi}{2})=\frac{ln(\frac{1}{2})}{100}. Assuming g(x)g(x) is continuous at π2\frac{\pi}{2}, g(π2)=limxπ2g(x)g(\frac{\pi}{2}) = \lim_{x\to \frac{\pi}{2}} g(x). So, c=ln(12)100=ln(2)100c = \frac{\ln(\frac{1}{2})}{100} = \frac{-\ln(2)}{100}.

The limit is ln(2)100\frac{-\ln(2)}{100}. We need to find which option is greater than this limit. ln(2)0.693\ln(2) \approx 0.693. So the limit is approximately 0.00693-0.00693. A. Is 0.00693<0-0.00693 < 0? Yes. B. Is 0.00693<1-0.00693 < 1? Yes. C. Is 0.00693<1-0.00693 < -1? No. D. Is 0.00693<2-0.00693 < 2? Yes.

The options that the limit is less than are A, B, and D.